Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Universality of the mean-field equations of networks of Hopfield-like neurons

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Modélisation des résaux dynamiques cérébraux (CRONOS); Inria Sophia Antipolis - Méditerranée (CRISAM); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Laboratoire Jean Alexandre Dieudonné (LJAD); Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA); Institut National de Recherche en Informatique et en Automatique (Inria); ANR-19-CE40-0024,ChaMaNe,Enjeux mathématiques issus des neurosciences(2019)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      HAL Université Côte d'Azur
    • نبذة مختصرة :
      International audience ; We revisit the problem of characterising the mean-field limit of a network of Hopfield-like neurons. Building on the previous work of [13, 1, 14] and [9] we establish for a large class of networks of Hopfield-like neurons, i.e. rate neurons, the mean-field equations on a time interval [0, T], T > 0, of the thermodynamic limit of these networks, i.e. the limit when the number of neurons goes to infinity. Unlike all previous work, except [9], we do not assume that the synaptic weights describing the connections between the neurons are i.i.d. as zero-mean Gaussians. The limit equations are stochastic and very simply described in terms of two functions, a "correlation" function noted KQ(t,s) and a "mean" function noted mQ (t). The "noise" part of the equations is a linear function of the Brownian motion, which is obtained by solving a Volterra equation of the second kind whose resolving kernel is expressed as a function of KQ. We give a constructive proof of the uniqueness of the limit equations. We use the corresponding algorithm for an effective computation of the functions KQ and mQ , given the weights distribution. Several numerical experiments are reported.
    • الدخول الالكتروني :
      https://inria.hal.science/hal-04677247
      https://inria.hal.science/hal-04677247v2/document
      https://inria.hal.science/hal-04677247v2/file/arxiv_rate_neurons.pdf
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.C8F73B45