Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

MAP-informed Unrolled Algorithms for Hyper-parameter Estimation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      CNRS@CREATE Ltd.; Signal et Communications (IRIT-SC); Institut de recherche en informatique de Toulouse (IRIT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI); Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); Image & Pervasive Access Lab (IPAL); National University of Singapore (NUS)-Agency for science, technology and research Singapore (A*STAR)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institute for Infocomm Research - I²R Singapore; National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Programme; Descartes https://descartes.cnrsatcreate.cnrs.fr/
    • بيانات النشر:
      HAL CCSD
      IEEE
    • الموضوع:
      2023
    • Collection:
      Université Toulouse 2 - Jean Jaurès: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Hyper-parameter tuning, and especially regularisation parameter estimation, is a challenging but essential task when solving inverse problems. The solution is obtained here through the minimization of a functional composed of a data fidelity term and a regularization term. Those terms are balanced through a (or several) regularisation parameter(s) whose estimation is made under an unrolled strategy together with the inverse problem solving. The resulting network is trained while incorporating information on the model through Maximum a Posteriori estimation which drastically decreases the amount of data needed for the training and results in better estimation results. The performances are demonstrated in a deconvolution context where the regularisation is performed in the wavelet domain.
    • Relation:
      hal-04153083; https://hal.science/hal-04153083; https://hal.science/hal-04153083/document; https://hal.science/hal-04153083/file/ICIP_2023_final.pdf
    • الرقم المعرف:
      10.1109/ICIP49359.2023.10222154
    • الدخول الالكتروني :
      https://hal.science/hal-04153083
      https://hal.science/hal-04153083/document
      https://hal.science/hal-04153083/file/ICIP_2023_final.pdf
      https://doi.org/10.1109/ICIP49359.2023.10222154
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.C8E68E00