Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

MALDI-TOF mass spectrometric protein profiling of microvesicles produced by the NK-92 natural killer cell line ; Протеомное профилирование микровезикул клеток естественных киллеров линии NK-92 с помощью MALDI-масс-спектрометрии

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      This work was supported by the Russian Foundation for Basic Research (Project Registration No. 19-015-00218) and was performed in the Department of Immunology and Cell Interactions, D. Ott Institute of Obstetrics, Gynecology, and Reproductology (St. Petersburg, Russia), partially within the institutional state assignment framework (R&D State Registration No. AAAA-A19-119021290116-1), using the equipment of Chemical Analysis and Materials Research Centre, St. Petersburg State University (St. Petersburg, Russia); Российский фонд фундаментальных исследований, НИИ акушерства, гинекологии и репродуктологии им. Д.О. Отта
    • بيانات النشر:
      SPb RAACI
    • الموضوع:
      2020
    • Collection:
      Medical Immunology (E-Journal) / Медицинская иммунология
    • نبذة مختصرة :
      Extracellular vesicles that are shed from the plasma membrane contain a wide range of molecules, among which are proteins, lipids, nucleic acids, and sugars. The cytotoxic proteins of natural killer cells play a key role in the implementation of their cytolytic functions. One of the important steps in understanding the distant communication of cells is the determination of the proteome of microvesicles. This study was aimed at the protein profiling of the microvesicles produced by the NK-92 natural killer cell line. 986 proteins with a variety of functions were identified in the lysate of microvesicles using the MALDI-TOF mass spectrometric analysis. With automated methods of functional analysis applied, it has been shown that the largest protein groups are hypothetical proteins, proteins with unknown functions, and domains. The most representative groups are also comprised by transcription regulators; intracellular signaling proteins; RNA translation, transcription, processing, and utilization regulators; receptors; protein processing and proteolysis regulators; amino acid metabolism enzymes, as well as transport proteins and transport regulators. Minor functional groups are represented by vitamins and mineral metabolism enzymes, membrane and microdomain-forming proteins, hormones, hemostatic regulators, regulators of sensory systems, specific mitochondrial and Golgi apparatus proteins, and extracellular signaling proteins. An intermediate position is occupied by various functional groups, including cytoskeleton and motor proteins; proteins of centrioles; ion channels and their regulators; proteins of the ubiquitin-proteasome pathway of protein degradation; lipid, steroid, and fatty acid metabolism enzymes; nucleic acid base and carbohydrate metabolism enzymes, as well as energy metabolism enzymes and other proteins involved in intermediate metabolism; proteins of the immune response and inflammation; antigens and histocompatibility proteins; cytokines and growth factors; regulators of apoptosis, autophagy, ...
    • File Description:
      application/pdf
    • Relation:
      https://www.mimmun.ru/mimmun/article/view/1976/1282; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5942; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5943; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5944; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5945; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5946; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5947; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5948; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5949; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5950; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5951; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5952; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5953; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5954; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/5962; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/6003; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/6106; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/6107; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1976/6108; Brittoli A., Fallarini S., Zhang H., Pieters R.J., Lombardi G. “In vitro” studies on galectin-3 in human natural killer cells. Immunol. Lett., 2018, Vol. 194, pp. 4-12.; Burbano C., Rojas M., Vasquez G., Castano D. Microparticles that form immune complexes as modulatory structures in autoimmune responses. Mediators Inflamm., 2015, Vol. 2015, 267590. doi:10.1155/2015/267590.; Cepero-Donates Y., Rakotoarivelo V., Mayhue M., Ma A., Chen Y.G., Ramanathan S. Homeostasis of IL-15 dependent lymphocyte subsets in the liver. Cytokine, 2016, Vol. 82, pp. 95-101.; Haraszti R.A., Didiot M.C., Sapp E., Leszyk J., Shaffer S.A., Rockwell H.E., Gao F., Narain N.R., DiFiglia M., Kiebish M.A., Aronin N., Khvorova A. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J. Extracell. Vesicles, 2016, Vol. 5, no. 1, 32570. doi:10.3402/jev.v5.32570.; Holt D., Ma X., Kundu N., Fulton A. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol. Immunother., 2011, Vol. 60, no. 11, pp. 1577-1586.; Honorati M.C., Neri S., Cattini L., Facchini A. IL-17 enhances the susceptibility of U-2 OS osteosarcoma cells to NK cell lysis. Clin. Exp. Immunol., 2003, Vol. 133, no. 3, pp. 344-349.; Jaime P., Garcia-Guerrero N., Estella R., Pardo J., Garcia-Alvarez F., Martinez-Lostao L. CD56(+)/CD16(-) Natural killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis. Osteoarthritis Cartilage, 2017, Vol. 25, no. 10, pp. 1708-1718.; Jong A.Y., Wu C.H., Li J., Sun J., Fabbri M., Wayne A.S., Seeger R.C. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J. Extracell. Vesicles, 2017, Vol. 6, no. 1, 1294368. doi:10.1080/20013078.2017.1294368.; Keerthikumar S., Gangoda L., Gho Y.S., Mathivanan S. Exosomes and microvesicles. Methods in molecular biology. Ed. Hill A., Humana Press, 2017, pp. 189-196.; Khurana D., Arneson L.N., Schoon R.A., Dick C.J., Leibson P.J. Differential regulation of human NK cellmediated cytotoxicity by the tyrosine kinase Itk. J. Immunol., 2007, Vol. 178, no. 6, pp. 3575-3582.; Ko Y.H., Park S., Jin H., Woo H., Lee H., Park C., Kim K. Granzyme B leakage-induced apoptosis is a crucial mechanism of cell death in nasal-type NK/T-cell lymphoma. Lab. Invest., 2007, Vol. 87, no. 3, pp. 241-250.; Korenevskii A.V., Milyutina Y.P., Zhdanova A.A., Pyatygina K.M., Sokolov D.I., Sel’kov S.A. Massspectrometric analysis of proteome of microvesicles produced by NK-92 natural killer cells. Bull. Exp. Biol. Med., 2018, Vol. 165, no. 4, pp. 564-571.; Kumar D., Hosse J., von Toerne C., Noessner E., Nelson P.J. JNK MAPK pathway regulates constitutive transcription of CCL5 by human NK cells through SP1. J. Immunol., 2009, Vol. 182, no. 2, pp. 1011-1020.; Kweon S., Phan M.T., Chun S., Yu H., Kim J., Kim S., Lee J., Ali A.K., Lee S.H., Kim S.K., Doh J., Cho D. Expansion of human NK cells using K562 cells expressing OX40 ligand and short exposure to IL-21. Front. Immunol., 2019, Vol. 10, 879. doi:10.3389/fimmu.2019.00879.; Liu X.C., Liang H., Tian Z., Ruan Y.S., Zhang L., Chen Y. Proteomic analysis of human NK-92 cells after NK cell-mediated cytotoxicity against K562 cells. Biochemistry Moscow, 2007, Vol. 72, no. 7, pp. 716-727.; Lugini L., Cecchetti S., Huber V., Luciani F., Macchia G., Spadaro F., Paris L., Abalsamo L., Colone M., Molinari A., Podo F., Rivoltini L., Ramoni C., Fais S. Immune surveillance properties of human NK cell-derived exosomes. J. Immunol., 2012, Vol. 189, no. 6, pp. 2833-2842.; Ma D., Cao W., Kapur A., Felder M., Scarlett C.O., Patankar M.S., Li L. Differential expression of proteins in naive and IL-2 stimulated primary human NK cells identified by global proteomic analysis. J. Proteomics, 2013, Vol. 91, pp. 151-163.; Malloci M., Perdomo L., Veerasamy M., Andriantsitohaina R., Simard G., Martinez M.C. Extracellular vesicles: mechanisms in human health and disease. Antioxid. Redox Signal., 2019, Vol. 30, no. 6, pp. 813-856.; Malorni W., Quaranta M.G., Straface E., Falzano L., Fabbri A., Viora M., Fiorentini C. The Rac-activating toxin cytotoxic necrotizing factor 1 oversees NK cell-mediated activity by regulating the actin/microtubule interplay. J. Immunol., 2003, Vol. 171, no. 8, pp. 4195-4202.; Manzini C., Vene R., Cossu I., Gualco M., Zupo S., Dono M., Spagnolo F., Queirolo P., Moretta L., Mingari M.C., Pietra G. Cytokines can counteract the inhibitory effect of MEK-i on NK-cell function. Oncotarget, 2016, Vol. 7, no. 38, pp. 60858-60871.; Mizrahi S., Markel G., Porgador A., Bushkin Y., Mandelboim O. CD100 on NK cells enhance IFNgamma secretion and killing of target cells expressing CD72. PLoS ONE, 2007, Vol. 2, no. 9, e818. doi:10.1371/journal.pone.0000818.; Nawrot R., Barylski J., Schulze W.X. Incorrectly annotated keratin derived peptide sequences lead to misleading MS/MS data interpretation. J. Proteomics, 2013, Vol. 91, pp. 270-273.; Ochoa M.C., Minute L., Rodriguez I., Garasa S., Perez-Ruiz E., Inoges S., Melero I., Berraondo P. Antibodydependent cell cytotoxicity (ADCC): immunotherapy strategies enhancing effector NK cells. Immunol. Cell Biol., 2017, no. 4, pp. 347-355.; Oykhman P., Timm-McCann M., Xiang R.F., Islam A., Li S.S., Stack D., Huston S.M., Ma L.L., Mody C.H. Requirement and redundancy of the Src family kinases Fyn and Lyn in perforin-dependent killing of Cryptococcus neoformans by NK cells. Infect. Immun., 2013, Vol. 81, no. 10, pp. 3912-3922.; Pesce S., Carlomagno S., Moretta A., Sivori S., Marcenaro E. Uptake of CCR7 by KIR2DS4(+) NK cells is induced upon recognition of certain HLA-C alleles. J. Immunol. Res., 2015, Vol. 2015, 754373. doi:10.1155/2015/754373.; Scheiter M., Lau U., van Ham M., Bulitta B., Grobe L., Garritsen H., Klawonn F., Konig S., Jansch L. Proteome analysis of distinct developmental stages of human natural killer (NK) cells. Mol. Cell. Proteomics, 2013, Vol. 12, no. 5, pp. 1099-1114.; Singh U.P., Singh S., Singh R., Cong Y., Taub D.D., Lillard J.W., Jr. CXCL10-producing mucosal CD4+ T cells, NK cells, and NKT cells are associated with chronic colitis in IL-10(-/-) mice, which can be abrogated by antiCXCL10 antibody inhibition. J. Interferon Cytokine Res., 2008, Vol. 28, no. 1, pp. 31-43.; Sokolov D.I., Markova K.L., Mikhailova V.A., Vyazmina L.P., Milyutina Y.P., Kozyreva A.R., Zhdanova A.A., Malygina D.A., Onokhin K.V., Ivanova A.N., Korenevsky A.V., Selkov S.A. Phenotypic and functional characteristics of microvesicles produced by natural killer cells. Medical Immunology (Russia), 2019, Vol. 21, no. 4, pp. 669-688. doi:10.15789/1563-0625-2019-4-669-688.; Sokolov D.I., Ovchinnikova O.M., Korenkov D.A., Viknyanschuk A.N., Benken K.A., Onokhin K.V., Selkov S.A. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl. Res., 2016, Vol. 170, pp. 112-123.; Thery C., Zitvogel L., Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol., 2002, Vol. 2, no. 8, pp. 569-579.; Tramontano A.F., Lyubarova R., Tsiakos J., Palaia T., Deleon J.R., Ragolia L. Circulating endothelial microparticles in diabetes mellitus. Mediators Inflamm., 2010, Vol. 2010, 250476. doi:10.1155/2010/250476.; van der Pol E., Coumans F.A., Grootemaat A.E., Gardiner C., Sargent I.L., Harrison P., Sturk A., van Leeuwen T.G., Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. Thromb. Haemost., 2014, Vol. 12, no. 7, pp. 1182-1192.; van Helden M.J., Zaiss D.M., Sijts A.J. CCR2 defines a distinct population of NK cells and mediates their migration during influenza virus infection in mice. PLoS ONE, 2012, Vol. 7, no. 12, e52027. doi:10.1371/journal.pone.0052027.; van Niel G., d’Angelo G., Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, Vol. 19, no. 4, pp. 213-228.; Vasilopoulou E., Loubiere L.S., Lash G.E., Ohizua O., McCabe C.J., Franklyn J.A., Kilby M.D., Chan S.Y. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner. Hum. Reprod., 2014, Vol. 29, no. 6, pp. 1161-1172.; Veerman R.E., Gucluler Akpinar G., Eldh M., Gabrielsson S. Immune cell-derived extracellular vesicles –functions and therapeutic applications. Trends Mol. Med., 2019, Vol. 25, no. 5, pp. 382-394.; Voigt J., Malone D.F.G., Dias J., Leeansyah E., Bjorkstrom N.K., Ljunggren H.G., Grobe L., Klawonn F., Heyner M., Sandberg J.K., Jansch L. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur. J. Immunol., 2018, Vol. 48, no. 9, pp. 1456-1469.; Wagstaffe H.R., Nielsen C.M., Riley E.M., Goodier M.R. IL-15 promotes polyfunctional NK cell responses to influenza by boosting IL-12 production. J. Immunol., 2018, Vol. 200, no. 8, pp. 2738-2747.; Wang W., Guo H., Geng J., Zheng X., Wei H., Sun R., Tian Z. Tumor-released galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J. Biol. Chem., 2014, Vol. 289, no. 48, pp. 33311-33319.; Zhu L., Aly M., Kuon R.J., Toth B., Wang H., Karakizlis H., Weimer R., Morath C., Ibrahim E., Ekpoom N., Opelz G., Daniel V. Patients with idiopathic recurrent miscarriage have abnormally high TGFss+ blood NK, NKT and T cells in the presence of abnormally low TGFss plasma levels. BMC Immunol., 2019, Vol. 20, no. 1, 10. doi:10.1186/s12865-019-0290-3.; https://www.mimmun.ru/mimmun/article/view/1976
    • الرقم المعرف:
      10.15789/1563-0625-MMS-1976
    • الدخول الالكتروني :
      https://www.mimmun.ru/mimmun/article/view/1976
      https://doi.org/10.15789/1563-0625-MMS-1976
    • Rights:
      Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
    • الرقم المعرف:
      edsbas.C8B8B420