نبذة مختصرة : International audience ; Chagas disease prevention remains mostly based on triatomine vector control to reduce or eliminate house infestation with these bugs. The level of adaptation of triatomines to human housing is a key part of vector competence and needs to be precisely evaluated to allow for the design of effective vector control strategies. In this review, we examine how the domiciliation/intrusion level of different triatomine species/populations has been defined and measured and discuss how these concepts may be improved for a better understanding of their ecology and evolution, as well as for the design of more effective control strategies against a large variety of triatomine species. We suggest that a major limitation of current criteria for classifying triatomines into sylvatic, intrusive, domiciliary and domestic species is that these are essentially qualitative and do not rely on quantitative variables measuring population sustainability and fitness in their different habitats. However, such assessments may be derived from further analysis and modelling of field data. Such approaches can shed new light on the domiciliation process of triatomines and may represent a key tool for decision-making and the design of vector control interventions. Chagas disease is a major public health problem in the Americas, where it affects seven-eight million people (WHO 2014). The pathogenic agent is a protozoan parasite, Trypanosoma cruzi, mainly transmitted to humans and other mammals through the contaminated faeces of blood-sucking insects called triatomines (Hemiptera: Redu-viidae), also known as " kissing bugs ". Control of Chagas disease relies on the treatment of infected patients and prevention of transmission is based mainly on vector control. Currently, more than 140 species of triatomines are recognised. Over half of them have been shown to be naturally or experimentally infected with T. cruzi, but all are suspected to be able to transmit the parasite (or " serve as vectors ") (Bargues et al. 2010). ...
No Comments.