نبذة مختصرة : Solenoid valves (SV) are essential components of industrial systems and therefore widely used. As they suffer from high failure rates in the field, fault prognosis of these assets plays a major role for improving their maintenance and reliability. In this work, Bayesian convolutional neural networks are used to predict the remaining useful life (RUL) of SVs, by training them on the valve's current signatures. Predictive performance is further improved upon by using salient physical features obtained from an electromechanical model as the network's training input. Results show that our designed network architecture produces well-calibrated uncertainty estimations of the RUL predictive distributions, which is an important concern in prognostic decision-making.
No Comments.