Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Motion Compensated Dynamic MRI Reconstruction with Local Affine Optical Flow Estimation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      University of California Los Angeles (UCLA); University of California (UC); CoMputational imagINg anD viSion (IRIT-MINDS); Institut de recherche en informatique de Toulouse (IRIT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI); Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); Université Toulouse III - Paul Sabatier (UT3)
    • بيانات النشر:
      HAL CCSD
      Institute of Electrical and Electronics Engineers
    • الموضوع:
      2019
    • Collection:
      Université Toulouse 2 - Jean Jaurès: HAL
    • نبذة مختصرة :
      International audience ; This paper proposes a novel framework to reconstruct dynamic magnetic resonance imaging (DMRI) with motion compensation (MC). Specifically, by combining the intensity-based optical flow constraint with the traditional compressed sensing scheme, we are able to jointly reconstruct the DMRI sequences and estimate the interframe motion vectors. Then, the DMRI reconstruction can be refined through MC with the estimated motion field. By employing the coarse-to-fine multi-scale resolution strategy, we are able to update the motion field in different spatial scales. The estimated motion vectors need to be interpolated to the finest resolution scale to compensate the DMRI reconstruction. Moreover, the proposed framework is capable of handling a wide class of prior information (regularizations) for DMRI reconstruction, such as sparsity, low rank, and total variation. The formulated optimization problem is solved by a primal-dual algorithm with linesearch due to its efficiency when dealing with non-differentiable problems. Experiments on various DMRI datasets validate the reconstruction quality improvement using the proposed scheme in comparison to several state-of-the-art algorithms.
    • Relation:
      hal-02871358; https://hal.science/hal-02871358; https://hal.science/hal-02871358/document; https://hal.science/hal-02871358/file/Zhao_24782.pdf; OATAO: 24782
    • الرقم المعرف:
      10.1109/TBME.2019.2900037
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.C77B116F