Item request has been placed!
×
Item request cannot be made.
×
Processing Request
HPPN-based Prognosis for Hybrid Systems
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Ribot, Pauline; Chanthery, Elodie; Gaudel, Quentin
- المصدر:
Annual Conference of the Prognostics and Health Management Society 2017 ; https://hal.science/hal-01579483 ; Annual Conference of the Prognostics and Health Management Society 2017, Oct 2017, St. Petersburg, United States
- الموضوع:
- نوع التسجيلة:
conference object
- اللغة:
English
- معلومة اضافية
- Contributors:
Équipe DIagnostic, Supervision et COnduite (LAAS-DISCO); Laboratoire d'analyse et d'architecture des systèmes (LAAS); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)
- بيانات النشر:
HAL CCSD
- الموضوع:
2017
- Collection:
Université Toulouse 2 - Jean Jaurès: HAL
- الموضوع:
- نبذة مختصرة :
International audience ; This paper presents a model-based prognosis method for hybridsystems i.e. that have both discrete and continuous behaviors.The current state of the hybrid system is estimatedby a diagnosis process and the prognosis process uses thisstate estimation to predict the future states and to determinethe end of life (EOL) or the remaining useful life (RUL) ofthe system. The Hybrid Particle Petri Nets (HPPN) formalismis used to model the hybrid system behavior and degradation.A HPPN-based diagnoser has already been defined toprovide a current state estimation that takes uncertainty aboutthe system model and observations into account. We proposeto generate a prognoser from the HPPN model of the system.This prognoser is initialized and updated with the result of theHPPN-based diagnoser. It computes a distribution of beliefsover the future mode trajectories of the system and predictsthe system RUL/EOL. The prognosis methodology is demonstratedon a three tanks example.
- Relation:
hal-01579483; https://hal.science/hal-01579483; https://hal.science/hal-01579483/document; https://hal.science/hal-01579483/file/hppn-based-prognosis-FinalVersion.pdf
- Rights:
info:eu-repo/semantics/OpenAccess
- الرقم المعرف:
edsbas.C5BF513A
No Comments.