Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Hyperlooping Carbon Nanotube-Graphene Oxide Nanoarchitectonics as Membranes for Ultrafast Organic Solvent Nanofiltration

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2023
    • نبذة مختصرة :
      Membrane technology is a key enabler for a circular pharmaceutical industry, but chemically resistant polymeric membranes for organic solvent nanofiltration (OSN) often suffer from lower-than-required performances. Recently, graphene-based laminated membranes using small-flake graphene oxide (SFGO) nanosheets open up new avenues for high-performance OSN, but their permeance toward high viscosity solvents is below expectation. To address this issue, we design hyperlooping channels using multiwalled carbon nanotubes (MWCNTs) intercalated within lanthanum(III) (La 3+ )-cross-linked SFGO nanochannels to form a ternary nanoarchitecture for low-resistant transport toward high viscosity solvents. At optimized MWCNT loading, the defect-free membrane exhibits 138 L m –2 h –1 bar –1 ethanol permeance at >99% rejections toward organic dyes, outperforming state-of-the-art graphene oxide (GO)-based membranes to date. Even butanolwith twice the viscosity of ethanolexhibits a permeance no less than 60 L m –2 h –1 bar –1 at comparable rejection rates. Theoretical simulation suggests that La 3+ cross-linking is critical and can create an intact architecture that brings size exclusion into play as the dominant separation mechanism. Also, MWCNT nanochannel offers at least 1.5-fold lower ethanol transport resistance than that of the GO nanochannel, owing to greater bulk freedom in orientating ethanol molecules. Overall, the hyperlooping architecture demonstrates ∼3-fold higher permeance than neat SFGO membrane for elevating OSN performances.
    • Relation:
      https://figshare.com/articles/journal_contribution/Hyperlooping_Carbon_Nanotube-Graphene_Oxide_Nanoarchitectonics_as_Membranes_for_Ultrafast_Organic_Solvent_Nanofiltration/21815282
    • الرقم المعرف:
      10.1021/acsmaterialslett.2c00997.s001
    • Rights:
      CC BY-NC 4.0
    • الرقم المعرف:
      edsbas.C4CD4D14