نبذة مختصرة : Developing multi-scale spatial (nano/meso/micro-macroscopic) and temporal studies is crucial to understand, control, and pilot the relationships linking the structure to the ionic transport properties of hierarchically self-assembled functional materials. It is along these research lines that this exploratory work is positioned to meet their associated scientific challenges. It aims in particular to bring together elements of understanding for designing families of electrolytes with tuneable-by-design (cat/an)ionic conductivity levels and that can be implemented by reliable manufacturing processes to authorize their scalable integration into more efficient electrochemical energy conversion and storage devices. The scrutinized model families of soft-matter electrolytes are Thermotropic Ionic Liquid Crystals (TILCs), which synergistically combine dynamic hierarchical self-assembly with self-healing functionalities to encode dimensionality (quasi-1D/ quasi-2D/3D) controlled ionic transport. This research work presents and discusses the molecular engineering, syntheses and detailed studies of these model stimuli-responsive (An/Cat)ionic (A/C)-TILCs conductors.The study of the supramolecular organization of a model family of K+ and Na+ cation-conducting C-TILCs has unravelled i) a monotropic (i.e. which develops only during of the first heating scan) bicontinuous Cubic mesophase (Cubbi) with an Ia3d symmetry and ii) a hexagonal Columnar mesophase (Colhex), encoding 3D and quasi-1D transport processes, respectively. Polar ionic sub-domains are localized at the heart of the columns decorated at their periphery by aliphatic chains. The experimental study and modelling of the confinement of charge carriers within a model family of C18C18Im+/X- (X= Br-, I-, N(CN)2-) A-TILCs forming interdigitated Smectic A mesophases (SmAd are hosting quasi-2D anisotropic ionic transport) reveals a regime of nanoconfinement of anions subjected to electrostatic interactions within the ca. 1 nm-"thick" polar sub-layers within their lamellar ...
No Comments.