Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Semi-Parametric Estimation Using Bernstein Polynomial and a Finite Gaussian Mixture Model

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Département de Mathématiques Angers; Université d'Angers (UA); Université de Sfax; Laboratoire de mathématiques et applications UMR 7348 (LMA Poitiers ); Université de Poitiers = University of Poitiers (UP)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      MDPI
    • الموضوع:
      2022
    • Collection:
      Université de Poitiers: Publications de nos chercheurs.ses (HAL)
    • نبذة مختصرة :
      International audience ; The central focus of this paper is upon the alleviation of the boundary problem when the probability density function has a bounded support. Mixtures of beta densities have led to different methods of density estimation for data assumed to have compact support. Among these methods, we mention Bernstein polynomials which leads to an improvement of edge properties for the density function estimator. In this paper, we set forward a shrinkage method using the Bernstein polynomial and a finite Gaussian mixture model to construct a semi-parametric density estimator, which improves the approximation at the edges. Some asymptotic properties of the proposed approach are investigated, such as its probability convergence and its asymptotic normality. In order to evaluate the performance of the proposed estimator, a simulation study and some real data sets were carried out.
    • Relation:
      hal-04392383; https://univ-poitiers.hal.science/hal-04392383; https://univ-poitiers.hal.science/hal-04392383/document; https://univ-poitiers.hal.science/hal-04392383/file/entropy-24-00315.pdf
    • الرقم المعرف:
      10.3390/e24030315
    • الدخول الالكتروني :
      https://univ-poitiers.hal.science/hal-04392383
      https://univ-poitiers.hal.science/hal-04392383/document
      https://univ-poitiers.hal.science/hal-04392383/file/entropy-24-00315.pdf
      https://doi.org/10.3390/e24030315
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.C44CDCFD