Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Approximate Bayesian Computations to fit and compare insurance loss models

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Université Claude Bernard Lyon 1 (UCBL); Université de Lyon; Institut de Science Financière et d'Assurances (ISFA); Laboratoire de Sciences Actuarielles et Financières Lyon (LSAF); University of Melbourne
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2021
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • نبذة مختصرة :
      International audience ; Approximate Bayesian Computation (ABC) is a statistical learning technique to calibrate and select models by comparing observed data to simulated data. This technique bypasses the use of the likelihood and requires only the ability to generate synthetic data from the models of interest. We apply ABC to fit and compare insurance loss models using aggregated data. A state-of-the-art ABC implementation in Python is proposed. It uses sequential Monte Carlo to sample from the posterior distribution and the Wasserstein distance to compare the observed and synthetic data. MSC 2010 : 60G55, 60G40, 12E10.
    • Relation:
      hal-02891046; https://hal.science/hal-02891046; https://hal.science/hal-02891046v2/document; https://hal.science/hal-02891046v2/file/ABCFitLoMo_Goffard_Laub_V2.pdf
    • الرقم المعرف:
      10.1016/j.insmatheco.2021.06.002
    • الدخول الالكتروني :
      https://hal.science/hal-02891046
      https://hal.science/hal-02891046v2/document
      https://hal.science/hal-02891046v2/file/ABCFitLoMo_Goffard_Laub_V2.pdf
      https://doi.org/10.1016/j.insmatheco.2021.06.002
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.C2FB8785