Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

On approximation to a real number by algebraic numbers of bounded degree ; Sur l'approximation d'un nombre réel par des nombres algébriques de degré borné

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut Camille Jordan (ICJ); École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS); Combinatoire, théorie des nombres (CTN); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      Université de Lyon: HAL
    • نبذة مختصرة :
      Accepté pour publication dans Annals of Mathematics. ; International audience ; In his seminal 1961 paper, Wirsing studied how well a given transcendental real number ξ can be approximated by algebraic numbers α of degree at most n for a given positive integer n, in terms of the so-called naive height H(α) of α. He showed that the supremum ω_n*(ξ) of all ω for which infinitely many such α have |ξ -α| ≤ H(α)^{ -ω-1} is at least (n + 1)/2. He also asked if we could even have ω_n* (ξ) ≥ n as it is generally expected. Since then, all improvements on Wirsing's lower bound were of the form n/2 + O(1) until Badziahin and Schleischitz showed in 2021 that ω_n* (ξ) ≥ an for each n ≥ 4, with a = 1/ √ 3 ≃ 0.577. In this paper, we use a different approach partly inspired by parametric geometry of numbers and show that ω_n* (ξ) ≥ an for each n ≥ 2, with a = 1/(2 -log 2) ≃ 0.765.
    • الدخول الالكتروني :
      https://hal.science/hal-04759799
      https://hal.science/hal-04759799v1/document
      https://hal.science/hal-04759799v1/file/Wirsing_version_ArXiv.pdf
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.C2D34ECB