نبذة مختصرة : By using unbiased continuous-space quantum Monte Carlo simulations, we investigate the ground-state properties of a one-dimensional repulsive Fermi gas subjected to a commensurate periodic optical lattice (OL) of arbitrary intensity. The equation of state and the magnetic structure factor are determined as a function of the interaction strength and of the OL intensity. In the weak OL limit, Yang's theory for the energy of a homogeneous Fermi gas [C.-N. Yang, Phys. Rev. Lett. 19, 1312 (1967)] is recovered. In the opposite limit (deep OL), we analyze the convergence to the Lieb-Wu theory for the Hubbard model [E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 ( 1968)], comparing two approaches to map the continuous space to the discrete-lattice model: The first is based on ( noninteracting) Wannier functions and the second effectively takes into account strong-interaction effects within a parabolic approximation of the OL wells. We find that strong antiferromagnetic correlations emerge in deep OLs and also in very shallow OLs if the interaction strength approaches the Tonks-Girardeau limit. In deep OLs we find quantitative agreement with density-matrix renormalization-group calculations for the Hubbard model. The spatial decay of the antiferromagnetic correlations is consistent with quasi-long-range order even in shallow OLs, in agreement with previous theories for the half-filled Hubbard model.
No Comments.