Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

TPGPred: A Mixed-Feature-Driven Approach for Identifying Thermophilic Proteins Based on GradientBoosting

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Multidisciplinary Digital Publishing Institute
    • الموضوع:
      2024
    • Collection:
      MDPI Open Access Publishing
    • الموضوع:
    • نبذة مختصرة :
      Thermophilic proteins maintain their stability and functionality under extreme high-temperature conditions, making them of significant importance in both fundamental biological research and biotechnological applications. In this study, we developed a machine learning-based thermophilic protein GradientBoosting prediction model, TPGPred, designed to predict thermophilic proteins by leveraging a large-scale dataset of both thermophilic and non-thermophilic protein sequences. By combining various machine learning algorithms with feature-engineering methods, we systematically evaluated the classification performance of the model, identifying the optimal feature combinations and classification models. Trained on a large public dataset of 5652 samples, TPGPred achieved an Accuracy score greater than 0.95 and an Area Under the Receiver Operating Characteristic Curve (AUROC) score greater than 0.98 on an independent test set of 627 samples. Our findings offer new insights into the identification and classification of thermophilic proteins and provide a solid foundation for their industrial application development.
    • File Description:
      application/pdf
    • Relation:
      Molecular Informatics; https://dx.doi.org/10.3390/ijms252211866
    • الرقم المعرف:
      10.3390/ijms252211866
    • الدخول الالكتروني :
      https://doi.org/10.3390/ijms252211866
    • Rights:
      https://creativecommons.org/licenses/by/4.0/
    • الرقم المعرف:
      edsbas.C2439FE5