Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A numerical strategy to discretize and solve the Poisson equation on dynamically adapted multiresolution grids for time-dependent streamer discharge simulations

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Jean Alexandre Dieudonné (LJAD); Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA); Center for Computational Sciences and Engineering LBNL Berkeley (CCSE); Lawrence Berkeley National Laboratory Berkeley (LBNL); Faculty of Science Brno (SCI / MUNI); Masaryk University Brno (MUNI); Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C); CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE); Fédération de Mathématiques de l'Ecole Centrale Paris (FR3487); Ecole Centrale Paris-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS); Laboratoire de Physique des Plasmas (LPP); Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2015
    • Collection:
      Archive de l'Observatoire de Paris (HAL)
    • نبذة مختصرة :
      International audience ; We develop a numerical strategy to solve multi-dimensional Poisson equations on dynamically adapted grids for evolutionary problems disclosing propagating fronts. The method is an extension of the multiresolution finite volume scheme used to solve hyperbolic and parabolic time-dependent PDEs. Such an approach guarantees a numerical solution of the Poisson equation within a user-defined accuracy tolerance. Most adaptive meshing approaches in the literature solve elliptic PDEs level-wise and hence at uniform resolution throughout the set of adapted grids. Here we introduce a numerical procedure to represent the elliptic operators on the adapted grid, strongly coupling inter grid relations that guarantee the conservation and accuracy properties of multiresolution finite volume schemes. The discrete Poisson equation is solved at once over the entire computational domain as a completely separate process. The accuracy and numerical performance of the method is assessed in the context of streamer discharge simulations.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1311.2488; hal-00903307; https://hal.science/hal-00903307; https://hal.science/hal-00903307v5/document; https://hal.science/hal-00903307v5/file/MRPoisson19022015.pdf; ARXIV: 1311.2488
    • الرقم المعرف:
      10.1016/j.jcp.2015.02.038
    • الدخول الالكتروني :
      https://hal.science/hal-00903307
      https://hal.science/hal-00903307v5/document
      https://hal.science/hal-00903307v5/file/MRPoisson19022015.pdf
      https://doi.org/10.1016/j.jcp.2015.02.038
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.C17E53C0