Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The specific capsule depolymerase of phage PMK34 sensitizes Acinetobacter baumannii to serum killing

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2022
    • Collection:
      Ghent University Academic Bibliography
    • نبذة مختصرة :
      The rising antimicrobial resistance is particularly alarming for Acinetobacter baumannii, calling for the discovery and evaluation of alternatives to treat A. baumannii infections. Some bacteriophages produce a structural protein that depolymerizes capsular exopolysaccharide. Such purified depolymerases are considered as novel antivirulence compounds. We identified and characterized a depolymerase (DpoMK34) from Acinetobacter phage vB_AbaP_PMK34 active against the clinical isolate A. baumannii MK34. In silico analysis reveals a modular protein displaying a conserved N-terminal domain for anchoring to the phage tail, and variable central and C-terminal domains for enzymatic activity and specificity. AlphaFold-Multimer predicts a trimeric protein adopting an elongated structure due to a long alpha-helix, an enzymatic beta-helix domain and a hypervariable 4 amino acid hotspot in the most ultimate loop of the C-terminal domain. In contrast to the tail fiber of phage T3, this hypervariable hotspot appears unrelated with the primary receptor. The functional characterization of DpoMK34 revealed a mesophilic enzyme active up to 50 degrees C across a wide pH range (4 to 11) and specific for the capsule of A. baumannii MK34. Enzymatic degradation of the A. baumannii MK34 capsule causes a significant drop in phage adsorption from 95% to 9% after 5 min. Although lacking intrinsic antibacterial activity, DpoMK34 renders A. baumannii MK34 fully susceptible to serum killing in a serum concentration dependent manner. Unlike phage PMK34, DpoMK34 does not easily select for resistant mutants either against PMK34 or itself. In sum, DpoMK34 is a potential antivirulence compound that can be included in a depolymerase cocktail to control difficult to treat A. baumannii infections.
    • File Description:
      application/pdf
    • Relation:
      https://biblio.ugent.be/publication/8753544; http://hdl.handle.net/1854/LU-8753544; http://dx.doi.org/10.3390/antibiotics11050677; https://biblio.ugent.be/publication/8753544/file/8753546
    • الرقم المعرف:
      10.3390/antibiotics11050677
    • Rights:
      Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.C113CD97