نبذة مختصرة : L'optimització amb colònies de formigues (ACO) és una metaheurística que s'inspira en la naturalesa. ACO explota la capacitat que tenen les formigues per a trobar rutes curtes, entre el formiguer i la font d'aliments, utilitzant dos mecanismes: la construcció de solucions i l'actualització de feromones. Igual que les formigues trien la ruta en funció de la concentració de feromones, l'algorisme ACO fa servir valors de feromones, a més d'informació greedy, per a construir diverses solucions en cada iteració. Posteriorment, l'algorisme fa servir algunes de les millors solucions construïdes per a actualitzar el seu model de feromones com una manera d'emular la dinàmica dels rastres de feromones de les formigues durant la cerca d'aliments. Aquest model de feromones condueix la cerca cap a àrees pròximes a la solució utilitzada per a l'actualització. Per tant, podem dir que aquest algorisme d'optimització utilitza un mecanisme d'\emph{aprenentatge positiu}, com ho fan la majoria de metaheurísticas. Se sap per experiència que l'aprenentatge negatiu, juntament amb el mecanisme d'aprenentatge positiu, juga un paper vital en el comportament dels eixams d'animals i en l'evolució dins de les espècies i entre espècies, així com en la història humana. Diversos treballs han intentat millorar els algorismes ACO existents integrant mecanismes d'aprenentatge negatiu. No obstant això, la majoria d'aquestes implementacions no han produït cap millora significativa sobre l'algorisme ACO estàndard. La nostra proposta d'aprenentatge negatiu per a ACO empra diverses característiques no contemplades en implementacions anteriors. El nostre aprenentatge negatiu ACO identifica solucions dolentes (o components d'una solució dolenta) comparant les solucions generades en una iteració ACO amb la solució generada per un component algorítmic addicional. Qualsevol component d'una solució que es trobi en una iteració de ACO però que no sigui present en la solució generada pel component algorítmic addicional es considera un component de solució de ...
No Comments.