Contributors: PIVOT Ifanadiana, Madagascar; UMR 228 Espace-Dev, Espace pour le développement; Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Université de Guyane (UG)-Université des Antilles (UA); ONF - Direction régionale de la Guyane Cayenne; Office national des forêts (ONF); Harvard Medical School Boston (HMS); Health, Emergence, Adaptation and Transmission (MIVEGEC-HEAT); Processus Écologiques et Évolutifs au sein des Communautés (PEEC); Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC); Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Sud )-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Sud )-Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC); Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Sud )-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Sud )
نبذة مختصرة : International audience ; Background: Geographical accessibility to health facilities remains one of the main barriers to access care in rural areas of the developing world. Although methods and tools exist to model geographic accessibility, the lack of basic geographic information prevents their widespread use at the local level for targeted program implementation. The aim of this study was to develop very precise, context-specific estimates of geographic accessibility to care in a rural district of Madagascar to help with the design and implementation of interventions that improve access for remote populations. Methods: We used a participatory approach to map all the paths, residential areas, buildings and rice fields on Open-StreetMap (OSM). We estimated shortest routes from every household in the District to the nearest primary health care center (PHC) and community health site (CHS) with the Open Source Routing Machine (OSMR) tool. Then, we used remote sensing methods to obtain a high resolution land cover map, a digital elevation model and rainfall data to model travel speed. Travel speed models were calibrated with field data obtained by GPS tracking in a sample of 168 walking routes. Model results were used to predict travel time to seek care at PHCs and CHSs for all the shortest routes estimated earlier. Finally, we integrated geographical accessibility results into an e-health platform developed with R Shiny. Results: We mapped over 100,000 buildings, 23,000 km of footpaths, and 4925 residential areas throughout Ifana-diana district; these data are freely available on OSM. We found that over three quarters of the population lived more than one hour away from a PHC, and 10-15% lived more than 1 h away from a CHS. Moreover, we identified areas in the North and East of the district where the nearest PHC was further than 5 h away, and vulnerable populations across the district with poor geographical access (> 1 h) to both PHCs and CHSs. Conclusion: Our study demonstrates how to improve geographical ...
No Comments.