Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Estimating Disease-Free Life Expectancy Based on Clinical Data from the French Hospital Discharge Database

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Sciences Actuarielle et Financière (SAF); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon; Prim'Act; CEntre de REcherches en MAthématiques de la DEcision (CEREMADE); Université Paris Dauphine-PSL; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS); Bordeaux population health (BPH); Université de Bordeaux (UB)-Institut de Santé Publique, d'Épidémiologie et de Développement (ISPED)-Institut National de la Santé et de la Recherche Médicale (INSERM); CHU Bordeaux
    • بيانات النشر:
      HAL CCSD
      MDPI
    • الموضوع:
      2024
    • Collection:
      Université Paris-Dauphine: HAL
    • نبذة مختصرة :
      International audience ; The development of health indicators to measure healthy life expectancy (HLE) is an active field of research aimed at summarizing the health of a population. Although many health indicators have emerged in the literature as critical metrics in public health assessments, the methods and data to conduct this evaluation vary considerably in nature and quality. Traditionally, health data collection relies on population surveys. However, these studies, typically of limited size, encompass only a small yet representative segment of the population. This limitation can necessitate the separate estimation of incidence and mortality rates, significantly restricting the available analysis methods. In this article, we leverage an extract from the French National Hospital Discharge database to define health indicators. Our analysis focuses on the resulting Disease-Free Life Expectancy (Dis-FLE) indicator, which provides insights based on the hospital trajectory of each patient admitted to hospital in France during 2008–2013. Through this research, we illustrate the advantages and disadvantages of employing large clinical datasets as the foundation for more robust health indicators. We shed light on the opportunities that such data offer for a more comprehensive understanding of the health status of a population. In particular, we estimate age-dependent hazard rates associated with sex, alcohol abuse, tobacco consumption, and obesity, as well as geographic location. Simultaneously, we delve into the challenges and limitations that arise when adopting such a data-driven approach.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2406.02934; hal-04602826; https://hal.science/hal-04602826; https://hal.science/hal-04602826/document; https://hal.science/hal-04602826/file/article1_arxiv.pdf; ARXIV: 2406.02934
    • الرقم المعرف:
      10.3390/risks12060092
    • الدخول الالكتروني :
      https://hal.science/hal-04602826
      https://hal.science/hal-04602826/document
      https://hal.science/hal-04602826/file/article1_arxiv.pdf
      https://doi.org/10.3390/risks12060092
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.BFC5D983