Relation: INGE CUC; [1] E. A. Wheeler & P. Baas, “Wood identification-a review,” IAWA J, vol. 19, no. 3, pp. 241–264, 1998. Available: https://brill.com/view/journals/iawa/19/3/article-p241_2.xml?language=en; [2] F. Hanssen, N. Wischnewski, U. Moreth & E. A. Magel, “Molecular identification of Fitzroya cupressoides, Sequoia sempervirens, and Thuja plicata wood using taxon-specific rDNA-ITS primers,” IAWA J, vol. 32, no. 2, pp. 273–283, 2011. https://doi.org/10.1163/22941932-90000057; [3] M. Yu, K. Liu, L. Zhou, L. Zhao & S. Liu, “Testing three proposed DNA barcodes for the wood identification of Dalbergia odorifera T. Chen and Dalbergia tonkinensis Prain,” Holzforschung, vol. 70, no. 2, pp. 127–136, 2016. https://doi.org/10.1515/hf-2014-0234; [4] E. C. Cabral, R. C. Simas, V. G. Santos, C. L. Queiroga, V. S. da Cunha, G. F. de Sá, R. J. Daroda & M. N. Eberlin, “Wood typification by Venturi easy ambient sonic spray ionization mass spectrometry: The case of the endangered Mahogany tree,” J. Mass Spectrom, vol. 47, no. 1, pp. 1–6, 2012. https://doi. org/10.1002/jms.2016; [5] R. Rana, G. Müller, A. Naumann & A. Polle, “FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish beech (Fagus sylvatica L.) trees grown at different sites,” Holzforschung, vol. 62, no. 5, pp. 530–538, 2008. https://doi.org/10.1515/HF.2008.104; [6] A. Dickson, B. Nanayakkara, D. Sellier, D. Meason, L. Donaldson & R. Brownlie, “Fluorescence imaging of cambial zones to study wood formation in Pinus radiata D. Don,” Trees - Struct Funct, vol. 31, no. 2, pp. 479–490, 2017. https://doi.org/10.1007/s00468-016-1469-3; [7] J. M. Kalaw & F. B. Sevilla, “Discrimination of wood species based on a carbon nanotube/polymer composite chemiresistor array,” Holzforschung, vol. 72, no. 3, pp. 215–223, 2018. https://doi.org/10.1515/ hf-2017-0097; [8] R. Fedele, I. E. Galbally, N. Porter, and I. A. Weeks, “Biogenic VOC emissions from fresh leaf mulch and wood chips of Grevillea robusta (Australian Silky Oak),” Atmos Environ, vol. 41, no. 38, pp. 8736– 8746. Dec. 2007. https://doi.org/10.1016/j.atmosenv.2007.07.037; [9] K. Müller, S. Haferkorna, W. Grabmer, A. Wisthaler, A. Hansel, J. Kreuzwieser, C. Cojocariu, H. Rennenberg & H. Herrmanna, “Biogenic carbonyl compounds within and above a coniferous forest in Germany,” Atmos Environ, vol. 40, No. 1, pp. 81–91, 2006. https://doi.org/10.1016/j.atmosenv.2005.10.070; [10] H. J. I. Rinne, A. B. Guenther, J. P. Greenberg & P. C. Harley, “Isoprene and monoterpene fluxes measured above Amazonian rainforest and their dependence on light and temperature,” Atmos Environ, vol. 36, no. 14, pp. 2421–2426, May. 2002. https://doi.org/10.1016/S1352-2310(01)00523-4; [11] A. D. Wilson, D. G. Lester & C. S. Oberle, “Application of conductive polymer analysis for wood and woody plant identifications,” For Ecol Manage, vol. 209, no. 3, pp. 207–224, May. 2005. https://doi. org/10.1016/j.foreco.2005.01.030; [12] H. Shi, M. Zhang & B. Adhikari, “Advances of electronic nose and its application in fresh foods: A review,” Crit Rev Food Sci Nutr, vol. 58, no. 16, pp. 1–11, 2017. https://doi.org/10.1080/10408398.2017.1 327419; [13] L. Capelli, S. Sironi & R. Del Rosso, “Electronic Noses for Environmental Monitoring Applications,” Sensors, vol. 14, no. 11, pp. 19979–20007, 2014. https://doi.org/10.3390/s141119979; [14] L. Guo, Z. Yang & X. Dou, “Artificial Olfactory System for Trace Identification of Explosive Vapors Realized by Optoelectronic Schottky Sensing,” Adv Mater, vol. 29, no. 5, pp. 1–8, 2017. https://doi. org/10.1002/adma.201604528; [15] J. P. Santos & J. Lozano, “Real time detection of beer defects with a hand held electronic nose ,” presented at 10th Spanish Conference on Electron Devices, CDE, MD, ES, pp. 1–4, 11-13 Feb. 20015. https://doi.org/10.1109/CDE.2015.7087492; [16] J. R. Cordeiro, R. W. C. Li, É. S. Takahashi, G. P. Rehder, G. Ceccantini & J. Gruber, “Wood identification by a portable low-cost polymer-based electronic nose,” RSC Adv, vol. 6, no. 111, pp. 109945– 109949, 2016. https://doi.org/10.1039/c6ra22246c; [17] A. D. Wilson, “Application of a Conductive Polymer Electronic-Nose Device to Identify Aged Woody Samples,” 3 IARIA, Xpert Publishing, RO, IT, pp. 77–82, 2012. Available: https://www.fs.usda.gov/ treesearch/pubs/45153; [18] F. X. Garneau, B. Riedl, S. Hobbs, A. Pichette & H. Gagnon, “The use of sensor array technology for rapid differentiation of the sapwood and heartwood of Eastern Canadian spruce, fir and pine,” Holz als Roh- und Werkst, vol. 62, no. 6, pp. 470–473, 2003. https://doi.org/10.1007/s00107-004-0508-8; [19] L. F. Ruiz, “Detección de los insectos de la subfamilia Triatominae basado en narices electrónicas,” tesis maestría, UIS, BGA, CO, 2018.; [20] Figaro Engineering Inc, “Operating principle,” figaro Engineering, 2018. Available: https://www.figarosensor.com/technicalinfo/principle/mos-type.html; [21] Jia Yan, X. Guo, S. Duan, P. Jia, L. Wang, C Peng & S. Zhang, “Electronic Nose Feature Extraction Methods: A Review,” Sensors, vol. 15, no. 11, pp. 27804 –27831, Nov. 2015. https://doi.org/10.3390/ s151127804; [22] I. Rodriguez-Lujan, J. Fonollosa, A. Vergara, M. Homer & R. Huerta, “On the calibration of sensor arrays for pattern recognition using the minimal number of experiments,” Chemom Intell Lab Syst, vol. 130, pp. 123–134, Jan. 2014. https://doi.org/10.1016/j.chemolab.2013.10.012; [23] L. Carmel, S. Levy, D. Lancet & D. Harel, “A feature extraction method for chemical sensors in electronic noses,” Sens Actuators B:Chem, vol. 93, no. 1-3, pp. 67–76, Aug. 2003. https://doi.org/10.1016/ S0925-4005(03)00247-8; [24] J. Van Hulse, T. M. Khoshgoftaar & A. Napolitano, “Experimental perspectives on learning from imbalanced data,” presented at Proceedings of the 24th international conference on Machine learnin, ICML, NY, USA., pp. 935–942, Jun. 20, 2007. https://doi.org/10.1145/1273496.1273614; [25] D. A. Cieslak, N. V Chawla & A. Striegel, “Combating imbalance in network intrusion datasets,” IEEE International Conference on Granular Computing, GRC, ATL, USA, pp. 732–737, 2006. https://doi. org/10.1109/GRC.2006.1635905; [26] R. Blagus & L. Lusa, “Class prediction for high-dimensional class-imbalanced data,” BMC Bioinf, vol. 11, no. 1, pp. 1–17, 2010. https://doi.org/10.1186/1471-2105-11-523; [27] N. V Chawla, K. W. Bowyer, L. O. Hall & W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” J Artif Intell Res, vol. 16, pp. 321–357, 2002. https://doi.org/10.1613/jair.953; [28] M. A. Akbar, A. Ait Si Ali, A. Amira, F. Bensaali, M. Benammar, M. Hassan & A. Bermak, “An Empirical Study for PCA and LDA-Based Feature Reduction for Gas Identification,” IEEE Sens J, vol. 16, no. 14, pp. 5734–5746, 2016. https://doi.org/10.1109/JSEN.2016.2565721; [29] I. Goodfellow, Y. Bengio & A. Courville, Deep Learning, CBG: MIT Press, 2016.; [30] J. Friedman, T. Hastie & R. Tibshirani, The elements of statistical learning, NY, USA: Springer, 2001.; [31] G. James, D. Witten, T. Hastie & R. Tibshirani, An introduction to statistical learning. NY, USA: Springer, 2013.; 200; 188; 17; N. Mantilla Ramírez, L. Ruiz Jiménez, H. Ortega Boada & A. Sepúlveda Sepúlveda, “Identificación de especies de maderas locales mediante el uso de nariz electrónica y aprendizaje automático: un experimento preliminar”, INGECUC, vol. 17. no. 1, pp. 188–205. DOI: http://doi.org/10.17981/ingecuc.17.1.2021.15; https://hdl.handle.net/11323/10310; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.co/
No Comments.