Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Online estimation of the inverse of the Hessian for stochastic optimization with application to universal stochastic Newton algorithms

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)); Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Laboratoire de Mathématiques de l'INSA de Rouen Normandie (LMI); Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie); Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      Normandie Université: HAL
    • نبذة مختصرة :
      This paper addresses second-order stochastic optimization for estimating the minimizer of a convex function written as an expectation. A direct recursive estimation technique for the inverse Hessian matrix using a Robbins-Monro procedure is introduced. This approach enables to drastically reduces computational complexity. Above all, it allows to develop universal stochastic Newton methods and investigate the asymptotic efficiency of the proposed approach. This work so expands the application scope of secondorder algorithms in stochastic optimization.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2401.10923; hal-04391570; https://hal.science/hal-04391570; https://hal.science/hal-04391570/document; https://hal.science/hal-04391570/file/Newton_General.pdf; ARXIV: 2401.10923
    • الدخول الالكتروني :
      https://hal.science/hal-04391570
      https://hal.science/hal-04391570/document
      https://hal.science/hal-04391570/file/Newton_General.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.BECA9EF1