نبذة مختصرة : Many studies in the rigid gas permeable (RGP) lens fitting field have focused on providing the best fit for patients with irregular astigmatism, a challenging issue. Despite the ease and accuracy of fitting in the current fitting methods, no studies have provided a high-pace solution with the final best fit to assist experts. This work presents a deep learning solution for identifying features in Pentacam four refractive maps and RGP base curve identification. An authentic dataset of 247 samples of Pentacam four refractive maps was gathered, providing a multi-view image of the corneal structure. Scratch-based convolutional neural network (CNN) architectures and well-known CNN architectures such as AlexNet, GoogLeNet, and ResNet have been used to extract features and transfer learning. Features are aggregated through a fusion technique. Based on a comparison of means square error (MSE) of normalized labels, the multi-view scratch-based CNN provided R-squared of 0.849, 0.846, 0.835, and 0.834 followed by GoogLeNet, comparable with current methods. Transfer learning outperforms various scratch-based CNN models, through which proper specifications some scratch-based models were able to increase coefficient of determinations. CNNs on multi-view Pentacam images have enabled fast detection of the RGP lens base curve, higher patient satisfaction, and reduced chair time. Figure not available: see fulltext. © 2020, International Federation for Medical and Biological Engineering.
No Comments.