Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Optimization of classification and regression analysis of four monoclonal antibodies from Raman spectra using collaborative machine learning approach

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP); Lipides : systèmes analytiques et biologiques (Lip(Sys)2); Université Paris-Sud - Paris 11 (UP11); Laboratoire de l'Accélérateur Linéaire (LAL); Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS); Laboratoire Traitement et Communication de l'Information (LTCI); Télécom ParisTech-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS); Modelling brain structure, function and variability based on high-field MRI data (PARIETAL); Service NEUROSPIN (NEUROSPIN); Université Paris-Saclay-Institut des Sciences du Vivant Frédéric JOLIOT (JOLIOT); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut des Sciences du Vivant Frédéric JOLIOT (JOLIOT); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Centre de Mathématiques Appliquées de l'Ecole polytechnique (CMAP); Institut National de Recherche en Informatique et en Automatique (Inria)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2018
    • Collection:
      HAL-IN2P3 (Institut national de physique nucléaire et de physique des particules)
    • نبذة مختصرة :
      International audience ; The use of monoclonal antibodies (mAbs) constitutes one of the most important strategies to treat patients suffering from cancers such as hematological malignancies and solid tumors. These antibodies are prescribed by the physician and prepared by hospital pharmacists. An analytical control enables the quality of the preparations to be ensured. The aim of this study was to explore the development of a rapid analytical method for quality control. The method used four mAbs (Infliximab, Bevacizumab, Rituximab and Ramucirumab) at various concentrations and was based on recording Raman data and coupling them to a traditional chemometric and machine learning approach for data analysis. Compared to conventional linear approach, prediction errors are reduced with a data-driven approach using statistical machine learning methods. In the latter, preprocessing and predictive models are jointly optimized. An additional original aspect of the work involved on submitting the problem to a collaborative data challenge platform called Rapid Analytics and Model Prototyping (RAMP). This allowed using solutions from about 300 data scientists in collaborative work. Using machine learning, the prediction of the four mAbs samples was considerably improved. The best predictive model showed a combined error of 2.4% versus 14.6% using linear approach. The concentration and classification errors were 5.8% and 0.7%, only three spectra were misclassified over the 429 spectra of the test set. This large improvement obtained with machine learning techniques was uniform for all molecules but maximal for Bevacizumab with an 88.3% reduction on combined errors (2.1% versus 17.9%).
    • Relation:
      INSPIRE: 1712585
    • الرقم المعرف:
      10.1016/j.talanta.2018.02.109
    • الدخول الالكتروني :
      https://hal.science/hal-01975523
      https://hal.science/hal-01975523v1/document
      https://hal.science/hal-01975523v1/file/le2018.pdf
      https://doi.org/10.1016/j.talanta.2018.02.109
    • Rights:
      http://creativecommons.org/licenses/by-nc/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.BD514423