Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Deep learning approaches to assess speech intelligibility of head and neck cancer ; Approches d'apprentissage profond pour évaluer l'intelligibilité de la parole pour des cancers ORL

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Équipe Structuration, Analyse et MOdélisation de documents Vidéo et Audio (IRIT-SAMoVA); Institut de recherche en informatique de Toulouse (IRIT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI); Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); Université Toulouse III - Paul Sabatier (UT3); Université Paul Sabatier - Toulouse III; Julien Pinquier
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2022
    • Collection:
      Université Toulouse III - Paul Sabatier: HAL-UPS
    • نبذة مختصرة :
      Loss of speech intelligibility is commonly found in the post-treatment of conditions that affect the vocal tract, such as head and neck cancer. Due to this, perceptual evaluations are still the most widely used method to clinically assess speech intelligibility. On the other hand, these evaluations are known to be highly subjective, biased and time-consuming since the evaluation can be conditioned by the practitioner, or patients previously assessed. In order to tackle these issues, an automatic assessment has been seen as a growing and viable alternative, that could provide more objective, faster and unbiased measures. In the present work, we explore distinct ways to predict speech intelligibility based on the different granularity levels of sentence, word and phoneme. The results from the proposed granular models suggest correlations with the perceptual intelligibility ranging from 0.80 to as high as 0.89 when applied to the French head and neck cancer speech corpus. The results also suggest a correlation up to 0.91 when merging all granular systems. Several conclusions are drawn from each granularity level, namely concerning specific types of words and phonemes that play different levels of relevance for the intelligibility of distinct speakers. Moreover, a study on the individual modelling of a set of perceptual judges is also presented. The study showcased that different judge profiles emerge from the perceptual and the automatic set of judges. Similarly to the granular systems, the results suggest that an automatic approach can indeed be seen as more uniform and objective. This leaves the possibility of these approaches being implemented in clinical environments to either serve as a second opinion or to free the practitioner to perform other relevant tasks. ; La perte d'intelligibilité de la parole est souvent constatée après le traitement de maladies qui affectent les voies aérodigestives, comme les cancers ORL. Les évaluations perceptives restent la méthode la plus utilisée pour évaluer cliniquement ...
    • Relation:
      NNT: 2022TOU30272; tel-04094765; https://theses.hal.science/tel-04094765; https://theses.hal.science/tel-04094765/document; https://theses.hal.science/tel-04094765/file/2022TOU30272a.pdf
    • الدخول الالكتروني :
      https://theses.hal.science/tel-04094765
      https://theses.hal.science/tel-04094765/document
      https://theses.hal.science/tel-04094765/file/2022TOU30272a.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.BC9A9A2C