Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Bone regeneration in rabbit cranial defects: 3D printed polylactic acid scaffolds gradually enriched with marine bioderived calcium phosphate ; ENEngelskEnglishBone regeneration in rabbit cranial defects: 3D printed polylactic acid scaffolds gradually enriched with marine bioderived calcium phosphate

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2024
    • Collection:
      Universitet i Oslo: Digitale utgivelser ved UiO (DUO)
    • نبذة مختصرة :
      Objective This study aimed to evaluate the in vivo biocompatibility, mechanical performance and osteoconductive potential of 3D-printed polylactic acid (PLA) scaffolds enriched with marine bioderived calcium phosphate (bioCaP) for bone tissue engineering. Materials and methods PLA-bioCaP composite scaffolds were specifically designed for the rabbit cranial defect model by 3D printing, with a uniform distribution of open square-shaped pores and contributions in bioCaP. Physicochemical and mechanical characterization and the evaluation of biological response are presented. Results The scaffolds demonstrated mechanical properties comparable to human bones, integration with the host bone, and osteoconductive behavior promoting cell ingrowth from the defect edge. Strong mineralized tissue ingrowth through the scaffolds’ pores was observed, providing notable support to the host bone. In quantitative terms, micro-CT and histomorphometry analysis post-implantation revealed no significant differences in bone regeneration across all groups. Conclusion The 3D-printed scaffolds with perpendicular patterning, open porosity, and proposed composition displayed satisfactory mechanical properties, biocompatibility, and osteoconductive response. The scaffolds promoted bone regeneration at similar levels as the PLA. The highest contribution of bioCaP promoted a positive influence in certain histomorphometric parameters; however, it did not significantly improve their osteogenic capability. Further research is required to optimize scaffold composition and enhance their osteogenic potential. Clinical relevance This study presents a significant advancement in bone tissue engineering through the development of personalized composite scaffolds for bone-related applications. The clinical implications of this research are profound, especially considering the increasing demand for functional bone regeneration technologies capable of producing cost-effective producing cost-effective customized scaffolds.
    • Relation:
      Fernández, Iván Alonso Haugen, Håvard Jostein Parreiras Nogueira, Liebert Álvarez, Miriam López González, Pío Peña, Mónica López Cantalapied, Antonio González Muñoz, Fernando maria guzon . Bone regeneration in rabbit cranial defects: 3D printed polylactic acid scaffolds gradually enriched with marine bioderived calcium phosphate. Materialia. 2024; http://hdl.handle.net/10852/114057; 2300092; Materialia; 38; https://doi.org/10.1016/j.mtla.2024.102240
    • الرقم المعرف:
      10.1016/j.mtla.2024.102240
    • الدخول الالكتروني :
      http://hdl.handle.net/10852/114057
      https://doi.org/10.1016/j.mtla.2024.102240
    • Rights:
      Attribution-NonCommercial-NoDerivatives 4.0 International ; https://creativecommons.org/licenses/by-nc-nd/4.0/
    • الرقم المعرف:
      edsbas.BC46E2AA