Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Determination of the point of zero charge and isoelectric point of two agricultural wastes and their application in the removal of colorants ; Determinación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes ; Determinação do ponto de carga zero e ponto isoelétrico de dois resíduos agrícolas e sua aplicação na remoção de corantes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Universidad Nacional Abierta y a Distancia, UNAD
    • الموضوع:
      2019
    • Collection:
      Repositorio Institucional de la Universidad Nacional Abierta y a Distancia UNAD
    • نبذة مختصرة :
      Agro-industrial wastes have shown adsorptive properties and therefore can be considered as a potential alternative for the removal of dissolved contaminants present in industrial effluents. The chemical composition of the absorbate`s surface allows it to stablish its capacity to retain certain ionic contaminants. This study, determinates the point of zero charge (PZC) and the isoelectric point (IEP) of two agricultural wastes, rice husks and coconut husk, with the end of establishing the distribution of charges on the surface and subsequently to evaluate their capacity for the removal dissolved anionic or cationic colorants. In order to accomplish this, the study utilized the methods of pH drift and zeta potential varying the pH interval between 2.0 and 11 and maintaining the other variables at a constant. A PZC of 5.40 and an IEP of 9.10 were obtained for the rice husk, and a PZC of 4.61 and an IEP of 9.45 for the coconut husk, indicating a distribution of predominately positive charge on the surface. Further study of this characteristic confirmed its affinity for the removal of ionic colorants. The rice husk showed a removal of 93% of the cationic colorant basic red 46 (RB46) with at a pH higher than 5.0 and a retention of 73% of the anionic red 40 colorant(R40) at pH = 2.0 on rice husks. The determination of the PZC and IEP of the adsorbents allows for the establishment of better conditions for the adsorption of ionic colo­rants in solution. ; Los residuos agroindustriales han mostrado ca­racterísticas adsorbentes, y con ello su posible uso alternativo para la remoción de contaminan­tes disueltos presentes en los efluentes industriales. La caracterización química de la superficie del material adsorbente permite establecer su capacidad para retener ciertos contaminantes iónicos. En el presente estudio se determinó el punto de carga cero (PZC) y el punto isoeléctrico (IEP) de dos residuos agrícolas, cascarilla de arroz y corteza de coco, con el fin de establecer la distribución de cargas sobre su superficie y ...
    • File Description:
      application/pdf
    • Relation:
      http://hemeroteca.unad.edu.co/index.php/riaa/article/view/982/963; Aksu, Z. & Isoglu, A. (2006). Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution. Journal of Hazardous Materials. 137 (1): 418–430.; Alemán, A. (2012). Evaluación de la esterificación sobre cascarilla de arroz como estrategia para incrementar la capacidad de remoción del colorante rojo básico 46. Tesis de Maestría en Ciencias Químicas. Medellín: Fa¬cultad de Ciencias-Escuela de Química Medellín Uni¬versidad Nacional de Colombia.; Allende, M., Romero, E. & Reyez, L. (2007). Carac¬terización de compuestos de hierro, como material reactivo para inmovilizar Cr(VI) en suelo contaminado. Memorias en extenso. VI Congreso Internacional y XII nacional de Ciencias Ambientales. 1-6. Chihuahua: Uni¬versidad Autónoma del Estado de México.; Annadurai, G., Juang, R. & Lee, D. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials. 92 (3): 263–274.; Appel, C. Ma, L., Dean, R. & Kennelly, E. (2003). Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma. 113 (1-2): 77– 93.; Ashoka, H. & Inamdar, S. (2010). Adsorption Removal of methyl red from aqueous solutions with treated su-garcane bagasse and activated carbón- a comparative study. Global Journal of Enviromental Research. 4(3): 175-182.; Atun, G., Hisarli, G., Sheldrick, W. & Muhler, M. (2003). Adsorptive removal of methylene blue from colored effluents on fuller’s earth. Journal of Colloid and Interfa¬ce Science. 261 (1): 32–39.; Babic, B., Milonjic, S., Polovina, M. & Kaludierovic, B. (1999). Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon. 37 (3): 477–481.; Banat, I., Nigam, P., Singh, D. & Marchant, R. (1996). Mi¬crobial decolorization of textile-dyecontaining effluents: A review. Bioresource Technology. 58 (3): 217- 227. Bhatnagar, T. & Minocha, A. (2006). Conventional and non-conventional adsorbents for removal of pollutants from water: A review. Indian Journal of Chemical Technology. 13: 203-217.; Cheremisinoff, N. (2003). Environmental Laws and Re¬gulatory Drivers. (Chap. 2) 23-33. Handbook of Solid Waste Management and Waste Minimization Technolo¬gy. Burlington: Elsevier.; Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology. 97 (9): 1061–1085.; El-Fadel, M., Findikakis, A. & Leckie, J. (1997) Environmental Impacts of Solid Waste Landfilling. Journal of Environmental Management. 50 (1): 1–25.; El-Latif, A., Ibrahimz, A. & El-Kady. (2010). Adsorption Equilibrium, kinetics and thermodynamics of methyle-ne blue from aqueous solutions using biopolymer oak sawdust composite. Journal of American Science. 6 (6): 267-283.; Elkady, M., Ibrahim, A. & El-Latif, A. (2011). Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads. Desalina-tion. 278 (1-3): 412–423.; Forgacs, E., Cserháti, T. & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International. 30 (7): 953– 971.; Franks, G. & Meagher, L. (2003). The isoelectric points of sapphire crystals and alpha-alumina powder. Colloids and Surfaces A: Physicochem. Eng. Aspects. 214 (1-3): 99-/110.; Gómez del Río, J., Cicerone, D. & Morando, P. (2001). Aplicación de materiales naturales a purificación de efluentes: columnas de hidroxiapatita y calcita como intercambiadores de metales pesados. 25-32. Misiones: Jornadas SAM - CONAMET – AAS 2001.; Gupta, N., Kushwaha, A. & Chattopadhyaya, M. (2011). Kinetics and thermodynamics of malachite green ad-sorption on banana pseudo-stem fibers. Journal of Chemical and Pharmaceutical Research. 3(1): 284-296.; Hormaza, A., Figueroa, D. & Moreno, A. (2012). Evaluación de la remoción de un colorante azo sobre tuza de maíz mediante diseño estadístico. Revista de la Facul¬tad de Ciencias. 1 (1): 61-71.; Hormaza, A. & Suarez, E. (2009). Estudio del proceso de biosorción de dos colorantes estructuralmente diferentes sobre residuos avícolas. Rev. Soc. Quím. Perú. 75 (3): 329-338.; Martin, M. (2008). Caracterización y aplicación de bio¬masa residual a la eliminación de metales pesados. Tesis Doctoral, Departamento de Ingeniería Química. Granada: Universidad de Granada.; Menéndez, J., Illán –Gómez, C. & Radovic, R. (1995). On the difference between the isoelectric point and the point of zero charge of carbons. Carbon. 33 (11): 1655-1659.; Mohd Salleh, M., Mahmoud, D., Abdul Karim, W. & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desali¬nation, 280 (1-3): 1-13.; Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-Garcia, M. & Moreno-Castilla, C. (2003). Bioadsorption of Pb(II), Cd(II), and Cr(VI) on activated carbon from aqueous solutions. Carbon. 41: 323–330.; Ramakrishna, R. & Viraraghavan, T. (1997). Dye removal using low cost adsorbents. Water Sci. Technol. 36: 189–196; Robinson, T., McMullan, G., Marchant, R. & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology. 77 (3): 247–255.; Sabás, L. & Romero, E. Síntesis y caracterización del Cu3(PO4)2 para eliminar contaminantes del agua. Memorias en Extenso. 7-10. VI Congreso Internacional y XII Nacional de Ciencias Ambientales. Chihuahua: Uni¬versidad Autónoma del Estado de México.; Theivarasu, C., Mylsamy, S. & Sivakumar, N. (2011). Cocoa Shell as Adsorbent for the Removal of Methylene Blue from Aqueous Solution: Kinetic and Equilibrium Study. Universal Journal of Environmental Research and Technology. 1: 70-78.; Vijyakumar, G., Tamilasaran, R. & Dharmendirakumar, M. (2012). Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. Journal of Materials of Enviromental Sciences 3 (1): 157-170.; Uribe, L. & Villa, M. (2010). Colombia (Chapter 10). In: The International Comparative Legal Guide to: Environment Law 2010. A practical croos-border insight into environment law. 76-83, London: Ed. Global Legal Group Ltd.; Wanchanthuek, R. & Thapol, A. (2011). The Kinetic study of methylene blue adsorption over MgO from PVA template preparation. Journal of Enviromental Science and Technology. 4 (5): 552-559.; http://hemeroteca.unad.edu.co/index.php/riaa/article/view/982; https://repository.unad.edu.co/handle/10596/29515
    • الرقم المعرف:
      10.22490/21456453.982
    • الدخول الالكتروني :
      http://hemeroteca.unad.edu.co/index.php/riaa/article/view/982
      https://doi.org/10.22490/21456453.982
      https://repository.unad.edu.co/handle/10596/29515
    • Rights:
      Copyright (c) 2015 Revista de Investigación Agraria y Ambiental (RIAA) ; https://creativecommons.org/licenses/by/4.0/deed.es
    • الرقم المعرف:
      edsbas.BBA484AC