Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Introducing context-dependent and spatially-variant viewing biases in saccadic models

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Analysis representation, compression and communication of visual data (Sirocco ); Inria Rennes – Bretagne Atlantique; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5); Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS); University College of London London (UCL)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2016
    • Collection:
      Université de Rennes 1: Publications scientifiques (HAL)
    • نبذة مختصرة :
      International audience ; Previous research showed the existence of systematic tendencies in viewing behavior during scene exploration. For instance, saccades are known to follow a positively skewed, long-tailed distribution, and to be more frequently initiated in the horizontal or vertical directions. In this study, we hypothesize that these viewing biases are not universal, but are modulated by the semantic visual category of the stimulus. We show that the joint distribution of saccade amplitudes and orientations significantly varies from one visual category to another. These joint distributions are in addition spatially variant within the scene frame. We demonstrate that a saliency model based on this better understanding of viewing behavioral biases and blind to any visual information outperforms well-established saliency models. We also propose a saccadic model that takes into account classical low-level features and spatially-variant and context-dependent viewing biases. This model outperforms state-of-the-art saliency models, and provides scanpaths in close agreement with human behavior. The better description of viewing biases will not only improve current models of visual attention but could also influence many other applications such as the design of human–computer interfaces, patient diagnosis or image/video processing applications.
    • Relation:
      hal-01391745; https://hal.inria.fr/hal-01391745; https://hal.inria.fr/hal-01391745/document; https://hal.inria.fr/hal-01391745/file/LeMeur_SystematicTendencies_V3.3.pdf
    • الرقم المعرف:
      10.1016/j.visres.2016.01.005
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.BB11BB69