Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Classification of single normal and Alzheimer's disease individuals from cortical sources of resting state EEG rhythms

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Babiloni, Claudio; Triggiani, Antonio I.; Lizio, Roberta; Cordone, Susanna; Tattoli, Giacomo; Bevilacqua, Vitoantonio; Soricelli, Andrea; Ferri, Raffaele; Nobili, Flavio; Gesualdo, Loreto; Millán Calenti, José C.; Buján, Ana; Tortelli, Rosanna; Cardinali, Valentina; Barulli, Maria Rosaria; Giannini, Antonio; Spagnolo, Pantaleo; Armenise, Silvia; Buenza, Grazia; Scianatico, Gaetano; Logroscino, Giancarlo; Frisoni, Giovanni B.; DEL PERCIO, Claudio
    • بيانات النشر:
      Frontiers Research Foundation
      LAUSANNE, CH-1015, SWITZERLAND
    • الموضوع:
      2016
    • Collection:
      Sapienza Università di Roma: CINECA IRIS
    • نبذة مختصرة :
      Previous studies have shown abnormal power and functional connectivity of resting state electroencephalographic (EEG) rhythms in groups of Alzheimer's disease (AD) compared to healthy elderly (Nold) subjects. Here we tested the best classification rate of 120 AD patients and 100 matched Nold subjects using EEG markers based on cortical sources of power and functional connectivity of these rhythms. EEG data were recorded during resting state eyes-closed condition. Exact low-resolution brain electromagnetic tomography (eLORETA) estimated the power and functional connectivity of cortical sources in frontal, central, parietal, occipital, temporal, and limbic regions. Delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-40 Hz) were the frequency bands of interest. The classification rates of interest were those with an area under the receiver operating characteristic curve (AUROC) higher than 0.7 as a threshold for a moderate classification rate (i.e., 70%). Results showed that the following EEG markers overcame this threshold: (i) central, parietal, occipital, temporal, and limbic delta/alpha 1 current density; (ii) central, parietal, occipital temporal, and limbic delta/alpha 2 current density; (iii) frontal theta/alpha 1 current density; (iv) occipital delta/alpha 1 inter-hemispherical connectivity; (v) occipital-temporal theta/alpha 1 right and left intra-hemispherical connectivity; and (vi) parietal-limbic alpha 1 right intra-hemispherical connectivity. Occipital delta/alpha 1 current density showed the best classification rate (sensitivity of 73.3%, specificity of 78%, accuracy of 75.5%, and AUROC of 82%). These results suggest that EEG source markers can classify Nold and AD individuals with a moderate classification rate higher than 80%.
    • File Description:
      ELETTRONICO
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/26941594; info:eu-repo/semantics/altIdentifier/wos/WOS:000370592700001; volume:10; issue:FEB; journal:FRONTIERS IN NEUROSCIENCE; http://hdl.handle.net/11573/954425; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84964378023; http://journal.frontiersin.org/article/10.3389/fnins.2016.00047/full
    • الرقم المعرف:
      10.3389/fnins.2016.00047
    • الرقم المعرف:
      10.3389/fnins.2016.00047/full
    • الدخول الالكتروني :
      http://hdl.handle.net/11573/954425
      https://doi.org/10.3389/fnins.2016.00047
      http://journal.frontiersin.org/article/10.3389/fnins.2016.00047/full
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.BAD25331