Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Unitary reflection groups for quantum fault tolerance

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST); Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); Institut de Physique Nucléaire de Lyon (IPNL); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      American Scientific Publishers
    • الموضوع:
      2010
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • نبذة مختصرة :
      new version for the Journal of Computational and Theoretical Nanoscience, focused on "Technology Trends and Theory of Nanoscale Devices for Quantum Applications" ; International audience ; This paper explores the representation of quantum computing in terms of unitary reflections (unitary transformations that leave invariant a hyperplane of a vector space). The symmetries of qubit systems are found to be supported by Euclidean real reflections (i.e., Coxeter groups) or by specific imprimitive reflection groups, introduced (but not named) in a recent paper [Planat M and Jorrand Ph 2008, {\it J Phys A: Math Theor} {\bf 41}, 182001]. The automorphisms of multiple qubit systems are found to relate to some Clifford operations once the corresponding group of reflections is identified. For a short list, one may point out the Coxeter systems of type $B_3$ and $G_2$ (for single qubits), $D_5$ and $A_4$ (for two qubits), $E_7$ and $E_6$ (for three qubits), the complex reflection groups $G(2^l,2,5)$ and groups No $9$ and $31$ in the Shephard-Todd list. The relevant fault tolerant subsets of the Clifford groups (the Bell groups) are generated by the Hadamard gate, the $\pi/4$ phase gate and an entangling (braid) gate [Kauffman L~H and Lomonaco S~J 2004 {\it New J. of Phys.} {\bf 6}, 134]. Links to the topological view of quantum computing, the lattice approach and the geometry of smooth cubic surfaces are discussed.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/0807.3650; hal-00305181; https://hal.science/hal-00305181; https://hal.science/hal-00305181v3/document; https://hal.science/hal-00305181v3/file/UReflection.pdf; ARXIV: 0807.3650
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.BA90048B