Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Certifying ground-state properties of many-body systems

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Academy of Mathematics and Systems Science (AMSS); Chinese Academy of Sciences Beijing (CAS); Institut de Ciencies Fotoniques Castelldefels (ICFO); Perimeter Institute for Theoretical Physics Waterloo; Nanophysique et Semiconducteurs (NEEL - NPSC); Institut Néel (NEEL); Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ); Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ); Université Grenoble Alpes (UGA); Laboratoire Kastler Brossel (LKB (Lhomond)); Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS); École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Departement Elektrotechniek - ESAT leuven; Catholic University of Leuven = Katholieke Universiteit Leuven (KU Leuven); Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria); Centre de Physique Théorique Palaiseau (CPHT); École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS); Equipe Polynomial OPtimization (LAAS-POP); Laboratoire d'analyse et d'architecture des systèmes (LAAS); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); Institut de Mathématiques de Toulouse UMR5219 (IMT); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS); ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019); European Project: 101031549,QuoMoDys(2022); European Project: 813211,H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (Main Programme); H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers ,10.3030/813211,POEMA(2019)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      Université Grenoble Alpes: HAL
    • نبذة مختصرة :
      International audience ; A ubiquitous problem in quantum physics is to understand the ground-state properties of many-body systems. Confronted with the fact that exact diagonalisation quickly becomes impossible when increasing the system size, variational approaches are typically employed as a scalable alternative: energy is minimised over a subset of all possible states and then different physical quantities are computed over the solution state. Despite remarkable success, rigorously speaking, all what variational methods offer are upper bounds on the ground-state energy. On the other hand, so-called relaxations of the ground-state problem based on semidefinite programming represent a complementary approach, providing lower bounds to the ground-state energy. However, in their current implementation, neither variational nor relaxation methods offer provable bound on other observables in the ground state beyond the energy. In this work, we show that the combination of the two classes of approaches can be used to derive certifiable bounds on the value of any observable in the ground state, such as correlation functions of arbitrary order, structure factors, or order parameters. We illustrate the power of this approach in paradigmatic examples of 1D and 2D spin-one-half Heisenberg models. To improve the scalability of the method, we exploit the symmetries and sparsity of the considered systems to reach sizes of hundreds of particles at much higher precision than previous works. Our analysis therefore shows how to obtain certifiable bounds on many-body ground-state properties beyond energy in a scalable way.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2310.05844; info:eu-repo/grantAgreement//101031549/EU/Quantum Thermodynamics of Many-Body Driven Systems/QuoMoDys; info:eu-repo/grantAgreement//813211/EU/Polynomial Optimization, Efficiency through Moments and Algebra/POEMA; hal-04264341; https://hal.science/hal-04264341; ARXIV: 2310.05844; INSPIRE: 2709528
    • الرقم المعرف:
      10.1103/PhysRevX.14.031006
    • الدخول الالكتروني :
      https://doi.org/10.1103/PhysRevX.14.031006
      https://hal.science/hal-04264341
    • الرقم المعرف:
      edsbas.B973B277