Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Technical University of Berlin / Technische Universität Berlin (TUB); Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM); Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS); Synchrotron SOLEIL (SSOLEIL); Centre National de la Recherche Scientifique (CNRS); Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI); Max Planck Society; Max Planck Institute for Chemical Energy Conversion; Max-Planck-Gesellschaft; Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt)
    • بيانات النشر:
      HAL CCSD
      Nature Publishing Group
    • الموضوع:
      2020
    • Collection:
      Université de Montpellier: HAL
    • نبذة مختصرة :
      International audience ; This contribution reports the discovery and analysis of a p-block Sn-based catalyst for the electroreduction of molecular oxygen in acidic conditions at fuel cell cathodes; the catalyst is free of platinum-group metals and contains single-metal-atom actives sites coordinated by nitrogen. The prepared SnNC catalysts meet and exceed state-of-the-art FeNC catalysts in terms of intrinsic catalytic turn-over frequency and hydrogen–air fuel cell power density. The SnNC-NH3 catalysts displayed a 40–50% higher current density than FeNC-NH3 at cell voltages below 0.7 V. Additional benefits include a highly favourable selectivity for the four-electron reduction pathway and a Fenton-inactive character of Sn. A range of analytical techniques combined with density functional theory calculations indicate that stannic Sn(iv)Nx single-metal sites with moderate oxygen chemisorption properties and low pyridinic N coordination numbers act as catalytically active moieties. The superior proton-exchange membrane fuel cell performance of SnNC cathode catalysts under realistic, hydrogen–air fuel cell conditions, particularly after NH3 activation treatment, makes them a promising alternative to today’s state-of-the-art Fe-based catalysts.
    • الرقم المعرف:
      10.1038/s41563-020-0717-5
    • الدخول الالكتروني :
      https://hal.science/hal-03740635
      https://hal.science/hal-03740635v1/document
      https://hal.science/hal-03740635v1/file/SnNC%2520MAIN_20%252005%25202020-FINAL%2520REVISION.pdf
      https://doi.org/10.1038/s41563-020-0717-5
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.B913D5DD