Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Leveraging augmented-Lagrangian techniques for differentiating over infeasible quadratic programs in machine learning

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Models of visual object recognition and scene understanding (WILLOW); Département d'informatique - ENS Paris (DI-ENS); École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris; Institut National de Recherche en Informatique et en Automatique (Inria); École des Ponts ParisTech (ENPC); Statistical Machine Learning and Parsimony (SIERRA); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris; Louis Vuitton ENS Chair on Artificial Intelligence; ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019); ANR-22-CE33-0008,NIMBLE,Apprentissage et contrôle de modèles sensori-moteurs en robotique(2022); European Project: 101070165,HORIZON,AGIMUS
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Optimization layers within neural network architectures have become increasingly popular for their ability to solve a wide range of machine learning tasks and to model domain-specific knowledge. However, designing optimization layers requires careful consideration as the underlying optimization problems might be infeasible during training. Motivated by applications in learning, control and robotics, this work focuses on convex quadratic programming (QP) layers. The specific structure of this type of optimization layer can be efficiently exploited for faster computations while still allowing rich modeling capabilities. We leverage primal-dual augmented Lagrangian techniques for computing derivatives of both feasible and infeasible QP solutions. More precisely, we propose a unified approach which tackles the differentiability of the closest feasible QP solutions in a classical sense. We then harness this approach to enrich the expressive capabilities of existing QP layers. More precisely, we show how differentiating through infeasible QPs during training enables to drive towards feasibility at test time a new range of QP layers. These layers notably demonstrate superior predictive performance in some conventional learning tasks. Additionally, we present alternative formulations that enhance numerical robustness, speed, and accuracy for training such layers. Along with these contributions, we provide an open-source C++ software package called QPLayer for differentiating feasible and infeasible convex QPs and which can be interfaced with modern learning frameworks.
    • Relation:
      info:eu-repo/grantAgreement//101070165/EU/Next generation of AI-powered robotics for agile production/AGIMUS
    • الدخول الالكتروني :
      https://inria.hal.science/hal-04133055
      https://inria.hal.science/hal-04133055v2/document
      https://inria.hal.science/hal-04133055v2/file/2515_Leveraging_augmented_Lagr.pdf
    • Rights:
      http://creativecommons.org/choose/mark/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.B7FC2B20