Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Spatial, environmental and trophic niche partitioning by seabirds in a climate change hotspot

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Taronga Conservation Society Australia; Australian Research Council
    • بيانات النشر:
      Wiley
    • الموضوع:
      2025
    • Collection:
      Wiley Online Library (Open Access Articles via Crossref)
    • نبذة مختصرة :
      For similar species to co‐occur in places where resources are limited, they need to adopt strategies that partition resources to reduce competition. Our understanding of the mechanisms behind resource partitioning among sympatric marine predators is evolving, but we lack a clear understanding of how environmental change is impacting these dynamics. We investigated spatial and trophic resource partitioning among three sympatric seabirds with contrasting biological characteristics: greater crested terns Thalasseus bergii (efficient flyer, limited diver, and preference for high quality forage fish), little penguins Eudyptula minor (flightless, efficient diver, and preference for high quality forage fish) and silver gulls Chroicocephalus novaehollandiae (efficient flyer, limited diver and generalist diet). We investigated interannual variability in resource partitioning in relation to environmental variability in a climate change hotspot influenced by the warm and intensifying East Australian Current (EAC). Sampling was conducted from 2012 to 2014 during the austral summer breeding season of seabirds at Montague Island, Australia. Daily seabird movements were monitored using GPS trackers and feather tissues were collected and processed for stable isotope analysis (δ 15 N and δ 13 C). Generalised Linear Mixed Models were used to assess how changes in oceanographic conditions influenced space use for each species. Schoener's D and Bayesian mixing models were used to respectively investigate the levels of yearly inter‐specific environmental and trophic niche overlaps. Crested terns and little penguins were less likely to be observed in warm, saline EAC waters and crested terns and silver gulls had smaller foraging areas on days when more than 30% of available habitat was classified as EAC origin. All species preferred areas with low variability in sea surface temperature (<0.5°C). Terns and penguins occupied similar marine trophic levels, with penguins having larger isotopic niche spaces in 2014 when the ...
    • الرقم المعرف:
      10.1111/1365-2656.14245
    • الدخول الالكتروني :
      https://doi.org/10.1111/1365-2656.14245
      https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2656.14245
    • Rights:
      http://creativecommons.org/licenses/by/4.0/
    • الرقم المعرف:
      edsbas.B7EE17CF