Contributors: Combinatorics, Optimization and Algorithms for Telecommunications (COATI); Inria Sophia Antipolis - Méditerranée (CRISAM); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED); Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S); Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S); Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA); Modélisation des résaux dynamiques cérébraux (CRONOS); Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Université Côte d'Azur (UniCA); Centre National de la Recherche Scientifique (CNRS); Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA); ANR-17-EURE-0004,UCA DS4H,UCA Systèmes Numériques pour l'Homme(2017)
نبذة مختصرة : International audience ; Brain dynamics can be modeled as a temporal brain network starting from the activity of different brain regions in functional magnetic resonance imaging (fMRI) signals. When validating hypotheses about temporal networks, it is important to use an appropriate statistical null model that shares some features with the treated empirical data. The purpose of this work is to contribute to the theory of temporal null models for brain networks by introducing the Random Temporal Hyperbolic Graph Model (RTH), an extension of the Random Hyperbolic Graph (RH), known in the study of complex networks for its ability to reproduce crucial properties of real-world networks. We focus on temporal small-worldness which, in the static case, has been extensively studied in real-world complex networks and has been linked to the ability of brain networks to efficiently exchange information. We compare the RTH Graph Model with standard null models for temporal networks and show it is the null model that best reproduces the small-worldness of resting brain activity. This ability to reproduce fundamental features of real brain networks, while adding only a single parameter compared to classical models, suggests that the RTH Graph Model is a promising tool for validating hypotheses about temporal brain networks.
No Comments.