Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

On the Correspondence between Compositionality and Imitation in Emergent Neural Communication

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Lattice - Langues, Textes, Traitements informatiques, Cognition - UMR 8094 (Lattice); Université Sorbonne Nouvelle - Paris 3-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Département Littératures et langage - ENS-PSL (LILA); École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL); Apprentissage machine et développement cognitif (CoML); Laboratoire de sciences cognitives et psycholinguistique (LSCP); Département d'Etudes Cognitives - ENS-PSL (DEC); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)-Département d'Etudes Cognitives - ENS-PSL (DEC); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); This work was funded in part by the French government under management of Agence Nationale de la Recherche as part of the “Investissements d’avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute), and by the ALiEN (Autonomous Linguistic Emergence in Neural Networks) European Research Council projectno. 10101929. Experiments were conducted using HPC resources from TGCC-GENCI (grant 2022-AD011013547). M.R. was supported by the MSR-Inria joint lab and granted access to the HPC resources of IDRIS under the allocation 2021 AD011012278 made by GENCI; ACL; ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019)
    • بيانات النشر:
      CCSD
      Association for Computational Linguistics
    • الموضوع:
      2023
    • Collection:
      Université Sorbonne Nouvelle - Paris 3: HAL
    • الموضوع:
    • الموضوع:
      Toronto, Canada
    • نبذة مختصرة :
      International audience ; Compositionality is a hallmark of human language that not only enables linguistic generalization, but also potentially facilitates acquisition. When simulating language emergence with neural networks, compositionality has been shown to improve communication performance; however, its impact on imitation learning has yet to be investigated. Our work explores the link between compositionality and imitation in a Lewis game played by deep neural agents. Our contributions are twofold: first, we show that the learning algorithm used to imitate is crucial: supervised learning tends to produce more average languages, while reinforcement learning introduces a selection pressure toward more compositional languages. Second, our study reveals that compositional languages are easier to imitate, which may induce the pressure toward compositional languages in RL imitation settings.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2305.12941; ARXIV: 2305.12941
    • الرقم المعرف:
      10.18653/v1/2023.findings-acl.787
    • الدخول الالكتروني :
      https://hal.science/hal-04242002
      https://hal.science/hal-04242002v1/document
      https://hal.science/hal-04242002v1/file/2023.findings-acl.787.pdf
      https://doi.org/10.18653/v1/2023.findings-acl.787
    • Rights:
      http://creativecommons.org/licenses/by-nd/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.B75A9CFC