Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Monogamy of entanglement between cones

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Traitement optimal de l'information avec des dispositifs quantiques (QINFO); Inria Grenoble - Rhône-Alpes; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Université Grenoble Alpes (UGA)-Inria Lyon; Institut National de Recherche en Informatique et en Automatique (Inria); Probabilités, statistique, physique mathématique (PSPM); Institut Camille Jordan (ICJ); École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS); University of Oslo (UiO); University of Siegen = Universität Siegen Siegen; ANR-20-CE47-0014,ESQuisses,Évolutions Stochastiques Quantiques(2020); European Project: 843414,TIPTOP; European Project: 683107,H2020,ERC-2015-CoG,TempoQ(2016)
    • بيانات النشر:
      HAL CCSD
      Springer Verlag
    • الموضوع:
      2024
    • Collection:
      Université de Lyon: HAL
    • نبذة مختصرة :
      International audience ; A separable quantum state shared between parties $A$ and $B$ can be symmetrically extended to a quantum state shared between party $A$ and parties $B_1,\ldots ,B_k$ for every $k\in\mathbf{N}$. Quantum states that are not separable, i.e., entangled, do not have this property. This phenomenon is known as "monogamy of entanglement". We show that monogamy is not only a feature of quantum theory, but that it characterizes the minimal tensor product of general pairs of convex cones $\mathsf{C}_A$ and $\mathsf{C}_B$: The elements of the minimal tensor product $\mathsf{C}_A\otimes_{\min} \mathsf{C}_B$ are precisely the tensors that can be symmetrically extended to elements in the maximal tensor product $\mathsf{C}_A\otimes_{\max} \mathsf{C}^{\otimes_{\max} k}_B$ for every $k\in\mathbf{N}$. Equivalently, the minimal tensor product of two cones is the intersection of the nested sets of $k$-extendible tensors. It is a natural question when the minimal tensor product $\mathsf{C}_A\otimes_{\min} \mathsf{C}_B$ coincides with the set of $k$-extendible tensors for some finite $k$. We show that this is universally the case for every cone $\mathsf{C}_A$ if and only if $\mathsf{C}_B$ is a polyhedral cone with a base given by a product of simplices. Our proof makes use of a new characterization of products of simplices up to affine equivalence that we believe is of independent interest.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2206.11805; info:eu-repo/grantAgreement//843414/EU/Tensoring Positive Maps on Operator Structures/TIPTOP; info:eu-repo/grantAgreement//683107/EU/Temporal Quantum Correlations/TempoQ; ARXIV: 2206.11805; INSPIRE: 2100198
    • الرقم المعرف:
      10.1007/s00208-024-02935-4
    • الدخول الالكتروني :
      https://hal.science/hal-03720803
      https://hal.science/hal-03720803v1/document
      https://hal.science/hal-03720803v1/file/2206.11805v1.pdf
      https://doi.org/10.1007/s00208-024-02935-4
    • Rights:
      http://hal.archives-ouvertes.fr/licences/copyright/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.B6D511C9