نبذة مختصرة : 本論文由兩部分組成。第一部分介紹了關於瑞利-伯纳德對流的兩項工作。第一項工作在五個側向寬高比不同的矩形對流槽中研究了空間約束效應對流體動力學和傳熱效率的影響。實驗發現,整體流場隨著約束強度的增加而明顯減弱,而且大尺度環流的流向反轉變得更為頻繁。令人驚訝的是,儘管流動變慢,總體傳熱效率卻顯著地提高。仔細分析表明,空間約束改變了邊界層中羽流的形態和動力學特性,表現為形成的羽流結構更為有序和充滿活力,從而導致邊界層變得更薄更均勻,傳熱效率由此得以提高。第二項工作研究了不同溫度邊界條件對湍流熱對流的影響。實驗在兩個對流槽中進行:其中一個在上邊界固定溫度而在下邊界固定熱通量(HC 對流槽),另一個則在兩個邊界都保持恆定溫度(CC對流槽)。研究發現,在恆定溫度的邊界條件下,溫度邊界層的厚度對瑞利數的依賴關係滿足于1/3的標度律,區別于在恆定熱通量下的行為(標度律近似為2/7)。此外,CC 對流槽中的流場強度平均比HC對流槽中的要強∼9% ,其流向反轉頻率也要快1.5倍。我們把這些現象歸咎於不同溫度邊界條件下羽流的發射強度不同。 ; 論文的第二部分對另外一種重要的熱對流系統,水平對流,進行了實驗研究。在加熱和冷卻位于系統上邊界同一高度的條件下,我們觀測到了一個貫穿整個對流槽的大尺度環流。通過染料示蹤表明,流場中的迴流并不一定需要損耗能量來跨越溫度邊界層,因此可以更有效地維持其流動強度。對於熱傳輸效率以及溫度邊界層厚度隨瑞利數的變化關係,實驗觀測到了一個0.3的標度律,不同于經常被報道的理論值(0.2),這可能是因為在高瑞利數下流動狀態發生了轉變。本研究的结果表明,表面温度梯度不仅可以驱动大尺度环流,而且其強度也比人们普遍认为的要强。 ; This thesis consists of two self-contained parts, both related to the topic of thermal convection. ; In the first part, two sets of studies on turbulent Rayleigh-Bénard convection are presented. ; The first study addresses the confinement effects on the heat transport and flow dynamics in quasi-2D geometry. The experiments were conducted in five rectangular cells with the same height and length, while the width being varied to produce a lateral aspect ratio Γ ranging from 0.6 to 0.1. As expected, with decreasing Γ, i.e. increasing the level of confinement, the overall flow slows down and more plumes travel through the bulk region, thus resulting in a large-scale circulation with more frequent reversals. Surprisingly, despite a slower flow, the global heat transport efficiency enhances significantly. Detailed examinations from experiment and simulation show that this enhancement is brought about by the changes in the dynamics and morphology of the thermal plumes in the boundary layers: the confined geometry produces more coherent and energetic plume clusters that in turn result in more uniform and thinner thermal boundary layers. This study demonstrates how changes in turbulent bulk flow can influence the boundary layer dynamics and shows that the quasi-2D geometry is very different from the true 2D and ...
No Comments.