Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Modelo de analítica predictiva para hacer correctitud en un ambiente de RPA ; Conformance analytical model applied to RPA environments

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Guzmán Luna, Jaime Alberto; Sistemas Inteligentes Web (Sintelweb); Juan C. Monsalve 0000-0001-5327-5719; Guzmán Luna, Jaime 0000-0003-4737-1119; Juan Camilo Monsalve Machado
    • بيانات النشر:
      Universidad Nacional de Colombia
      Medellín - Minas - Maestría en Ingeniería - Analítica
      Facultad de Minas
      Medellín, Colombia
      Universidad Nacional de Colombia - Sede Medellín
    • الموضوع:
      2023
    • نبذة مختصرة :
      ilustraciones, diagramas ; La automatización de procesos robóticos o RPA (por sus siglas en ingles Robotic Process Automation), permite crear un robot de software que puede ser programado para ejecutar tareas repetitivas en un computador. Cuando se implementa un RPA en ambientes productivos, el RPA puede presentar fallas o mostrar un rendimiento diferente al esperado. Para esto, se implementa un modelo de analítica que permite hacer análisis de conformidad, es decir, permite hacer seguimiento a las ejecuciones del RPA, y poder así, encontrar fallas y hacer análisis de rendimiento. Lo primero que se hace es hacer un estudio de la composición de un RPA, para conocer las estructuras de programación y los operadores más importantes de los RPA. Después se diseña un modelo que permite representar y hacer seguimiento a las ejecuciones del RPA. Seguido a esto, se diseña un modelo de analítica, que permite verificar la conformidad del robot de software, es decir, comparar el proceso del RPA con las ejecuciones del RPA, y así, analizar si se presentan fallas provenientes de los recursos, los operadores o los datos. También se diseña un modelo de analítica que permite analizar el rendimiento del RPA, esto por medio de variables no funcionales del sistema como tiempo. Finalmente, se implementa un RPA en un ambiente de pruebas para evaluar el funcionamiento de los modelos en un caso de uso. (Texto tomado de la fuente) ; Robotic Process Automation (RPA), is a tool to create a software robot in order to perform repetitive tasks on a computer. When RPA is working in production environments, the RPA could fail or could has different perform. I propose an analytic model to analyze the compliance between the process model and robot execution, in order to nd errors and do performance analysis. Firstly, I shown the composition of an RPA, the programming structures and the most important operators. Secondly, a model is designed in order to monitor the RPA executions. After. that, an analytical model is designed, to verifying the ...
    • File Description:
      xx, 122 páginas; application/pdf
    • Relation:
      RedCol; LaReferencia; Adobbati, F. et al. (2023). Formal analysis of information flow and control properties in petri nets.; Ahram, T., Sargolzaei, A., Amaba, B., Laplante, P. A., Sargolzaei, S., and Daniels, J. (2019). The Internet of Things, Artificial Intelligence, Blockchain, and Professionalism. IT Professional, 20(6):15–19.; Badakhshan, P., Bernhart, G., Geyer-Klingeberg, J., Nakladal, J., Schenk, S., and Vogelgesang, T. (2019). The action engine – Turning process insights into action. CEUR Workshop Proceedings, 2374:28–31.; Berti, A., Van Zelst, S. J., Van Der Aalst, W. M., and Gesellschaf, F. (2019). Process mining for python (PM4py): Bridging the gap between process- And data science. CEUR Workshop Proceedings, 2374:13–16.; Biel, J. I. L., Tofé, E. J., Cámara, E. M., and de la Parte, M. M. P. (2022). Redes de petri aplicadas a la simulación del comportamiento de consumidores en escenarios concurridos. In XLIII Jornadas de Automática: libro de actas: 7, 8 y 9 de septiembre de 2022, Logroño (La Rioja), pages 537–543. Servizo de Publicacións.; Bosco, A., Augusto, A., Dumas, M., La Rosa, M., and Fortino, G. (2019). Discovering automatable routines from user interaction logs. Lecture Notes in Business Information Processing, 360:144–162.; Carmona J., e.-a. (November 2018). Conformance Checking: Relating Processes and Models. Springer Publishing Company, Incorporated, isbn:978-3-319-99413- 0 edition.; Chacón-Montero, J., Jiménez-Ramírez, A., and Enríquez, J. G. (2019). Towards a method for automated testing in robotic process automation projects. Proceedings - 2019 IEEE/ACM 14th International Workshop on Automation of Software Test, AST 2019, pages 42–47.; Chakraborti, T., Isahagian, V., Khalaf, R., Khazaeni, Y., Muthu- samy, V., Rizk, Y., and Unuvar, M. (2020). From Robotic Process Automation to Intelli- gent Process Automation: – Emerging Trends –. Lecture Notes in Business Information Processing, 393 LNBIP:215–228.; De Leoni, M., Lanciano, G., and Marrella, A. (2017). A tool for aligning event logs and prescriptive process models through automated planning. CEUR Workshop Proceedings, 1920 (September).; Hu, L., Liu, Z., Hu, W., Wang, Y., Tan, J., and Wu, F. (2020). Petri- net-based dynamic scheduling of flexible manufacturing system via deep reinforcement learning with graph convolutional network. Journal of Manufacturing Systems, 55:1–14.; Huang, B., Zhou, M., Lu, X. S., and Abusorrah, A. (2023). Scheduling of resource allocation systems with timed petri nets: A survey. ACM Computing Surveys, 55(11):1–27.; IEEE (2017). IEEE Guide for Terms and Concepts in Intelligent Process Automation. The Institute of Electrical and Electronics Engineers Standards Association.; Jan Mendling, e.-a. (2007). On the degree of behavioral similarity between business process models. Queensland University of Technology.; Leno, V., Dumas, M., Maggi, F. M., and La Rosa, M. (2018). Multi- Perspective process model discovery for robotic process automation. In Kirikova M. Te- niente E., L. A., editor, CEUR Workshop Proceedings, volume 2114, pages 37–45. CEUR- WS.; Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., and Maggi, F. M. (2020). Robotic Process Mining: Vision and Challenges. Business and Information Sys- tems Engineering.; Leno, V., Polyvyanyy, A., La Rosa, M., Dumas, M., and Maggi, F. M. (2019). Action logger: Enabling process mining for robotic process automation. In Depaire B. De Smedt J., D. M. F. D. K. A. L. H. R. M. R.-M. S. S. S. S. S. v. d. A. W., editor, CEUR Workshop Proceedings, volume 2420. CEUR-WS.; Leshob, A., Bourgouin, A., and Renard, L. (2018). Towards a Process Analysis Approach to Adopt Robotic Process Automation. In 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE), pages 46–53.; Lu, Y., Zhang, L., and Sun, J. (2019). Using colored petri nets to model and analyze workflow with separation of duty constraints. The International Journal of Advanced Manufacturing Technology, 40:179–192.; Malathi, T., Navaneethakrishnan, P. L., Arun, E., and Devakipri- yadharshini, V. N. (2021). Performance analysis on automating the PDF download process using Robotics Process Automation. IOP Conference Series: Materials Science and Engineering, 1059(1).; Molka, T, e.-a. (2014). Conformance checking for bpmn-based process models. Proceedings of the 29th Annual ACM Symposium on Applied Computing.; Muminov, B. and Kh, E. (2019). Modelling asynchronous parallel process with petri net. International Journal of Engineering and Advanced Technology (IJEAT), 8:400–405.; Ratia, M., Myll ̈arniemi, J., and Helander, N. (2018). Robotic Process Automation - Creating Value by Digitalizing Work in the Private Healthcare? In Proceedings of the 22Nd International Academic Mindtrek Conference, Mindtrek ’18, pages 222–227, New York, NY, USA. ACM.; Rozinat, A. and van der Aalst, W. (2008). Conformance checking of processes based on monitoring real behavior. Information Systems, 33(1):64– 95.; Sarno, R., Sinaga, F., and Sungkono, K. R. (2020). Anomaly detection in business processes using process mining and fuzzy association rule learning. Journal of Big Data, 7(1):1–19.; Van Der Aalst, W. (2016). Process mining: data science in action, volume 2. Springer.; van der Aalst, W. M. P. (2016). Conformance checking using causal footprints. Technische universiteit Eindhoven.; Veit, F., Geyer-Klingeberg, J., Madrzak, J., Haug, M., and Thomson, J. (2017). The proactive insights engine: Process mining meets machine learning and artificial intelligence. CEUR Workshop Proceedings, 1920(July).; Wanner, J., Hofmann, A., Fischer, M., Imgrund, F., Janiesch, C., and Geyer-Klingeberg, J. (2020). Process selection in RPA projects - Towards a quantifiable method of decision making. 40th International Conference on Information Systems, ICIS 2019, 6(November).; https://repositorio.unal.edu.co/handle/unal/84242; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
    • Rights:
      Atribución-NoComercial 4.0 Internacional ; http://creativecommons.org/licenses/by-nc/4.0/ ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.B48DB74C