Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Well posedness and numerical solution of kinetic models for angiogenesis

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Universidad de Oviedo
    • الموضوع:
      2021
    • Collection:
      Universidad Complutense de Madrid (UCM): E-Prints Complutense
    • نبذة مختصرة :
      Coordinadores: Rafael Gallego, Mariano Mateos (2021), Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones / XVI Congreso de Matemática Aplicada. Universidad de Oviedo. ; Angiogenesis processes including the effect of stochastic branching and spread of blood vessels can be described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker-Planck type with a diffusion equation for the angiogenic factor. Well posedness studies underline the importance of preserving positivity when constructing approximate solutions. We devise order one positivity preserving schemes for a reduced model and show that soliton-like asymptotic solutions are correctly captured. We also find good agreement with the original stochastic model from which the deterministic kinetic equations are derived working with ensemble averages. Higher order positivity preserving schemes can be devised combining WENO and SSP procedures. ; Ministerio de Ciencia, Innovación y Universidades (España) ; Depto. de Análisis Matemático y Matemática Aplicada ; Fac. de Ciencias Matemáticas ; TRUE ; pub
    • File Description:
      application/pdf
    • Relation:
      MTM2017-84446-C2-1-R; https://hdl.handle.net/20.500.14352/8839; XXXX-XXXX
    • الدخول الالكتروني :
      https://hdl.handle.net/20.500.14352/8839
    • Rights:
      Atribución-NoComercial-SinDerivadas 3.0 España ; https://creativecommons.org/licenses/by-nc-nd/3.0/es/ ; open access
    • الرقم المعرف:
      edsbas.B3398631