نبذة مختصرة : Breast cancer is one of the most prevalent cancers affecting women worldwide. In the breast, estrogen receptor alpha (ERα), upon binding with ligands, activates gene transcription and promotes cell growth and proliferation. Tamoxifen, a selective antagonist of ERα in breast, has been proved to be effective therapeutically. In spite of this, resistance remains a prominent issue and underlying mechanisms are not yet fully understood. Aberrant regulation of ER expression at genetic and transcriptional levels has been implicated as the mechanisms accounting for tamoxifen resistance. However, regulation of ERα expression at translational level including protein synthesis and degradation has not yet been characterized and its relevance to tamoxifen resistance has not been described. At level of protein synthesis, eukaryotic translation initiation factor 4E (eIF4E) selectively enhances the translation of 4E-sensitive mRNAs which contain long and complex 5’-untraslated regions (5’-UTR). eIF4E is often over-expressed in cancers. In silico analysis revealed that ERα contained a highly structured 5’-UTR similar to reported eIF4E-sensitive mRNAs, suggesting that ERα mRNA might be eIF4Esensitive. We showed by polysome fractionation and subsequent Q-PCR quantification that the ERα mRNAs were more actively translated in the cell line expressing higher levels of eIF4E. Consistently, transient transfection of eIF4E into an ERα-positive cell line resulted in enhanced protein expression of ERα. Moreover, subcelluar fractionation showed that eIF4E was bound with ERα mRNAs in the nucleus thus participating in transportation of mRNAs from the nucleus into the cytoplasm. Therefore, eIF4E could positively modulate protein synthesis of ERα by enhancing mRNA export in the nucleus as well as translation in the cytoplasm. Their positive correlation was validated in vivo using 106 Chinese breast cancer samples (Chi-square test, p=0.004). It was also found that elevated expression of eIF4E could mediate resistance to tamoxifen treatment and ...
No Comments.