Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A distributed and incremental algorithm for large-scale graph clustering

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Tallinn University; Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA); Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS); Computational Algorithms for Protein Structures and Interactions (CAPSID); Inria Nancy - Grand Est; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS); Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA); Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS); Université de Jendouba (UJ); Taibah University; Université Clermont Auvergne (UCA); Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS); Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne); Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2022
    • Collection:
      Université de Lorraine: HAL
    • نبذة مختصرة :
      International audience ; Graph clustering is one of the key techniques to understand structures that are presented in networks. In addition to clusters, bridges and outliers detection is also a critical task as it plays an important role in the analysis of networks. Recently, several graph clustering methods are developed and used in multiple application domains such as biological network analysis, recommendation systems and community detection. Most of these algorithms are based on the structural clustering algorithm. Yet, this kind of algorithm is based on the structural similarity. This latter requires to parse all graph’ edges in order to compute the structural similarity. However, the height needs of similarity computing make this algorithm more adequate for small graphs, without significant support to deal with large-scale networks. In this paper, we propose a novel distributed graph clustering algorithm based on structural graph clustering. The experimental results show the efficiency in terms of running time of the proposed algorithm in large networks compared to existing structural graph clustering methods.
    • الرقم المعرف:
      10.1016/j.future.2022.04.013
    • الدخول الالكتروني :
      https://inria.hal.science/hal-03659549
      https://inria.hal.science/hal-03659549v1/document
      https://inria.hal.science/hal-03659549v1/file/Inoubli-et-all-DMKD.pdf
      https://doi.org/10.1016/j.future.2022.04.013
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.B119E542