Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The first MICCAI challenge on PET tumor segmentation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Traitement de l'Information Medicale (LaTIM); Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Institut Brestois Santé Agro Matière (IBSAM); Université de Brest (UBO); Huazhong University of Science and Technology Wuhan (HUST); Memorial Sloane Kettering Cancer Center New York; Imagerie et cerveau (iBrain - Inserm U1253 - UNIV Tours ); Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM); Stermedia; Wroclaw University of Science and Technology; Service Informatique et développements; Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS); Images et Modèles; Faculty of Engineering and Computer Science Concordia University (ENCS); Concordia University Montreal; Vision, Action et Gestion d'informations en Santé (VisAGeS); Institut National de la Santé et de la Recherche Médicale (INSERM)-Inria Rennes – Bretagne Atlantique; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5); Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT); This work was partly funded by France Life Imaging (grant ANR-11-INBS-0006 from the French “Investissements d’Avenir” program); ANR-11-INBS-0006,FLI,France Life Imaging(2011)
    • بيانات النشر:
      HAL CCSD
      Elsevier
    • الموضوع:
      2018
    • Collection:
      Hospices Civils de Lyon (HCL): HAL
    • نبذة مختصرة :
      International audience ; Introduction: Automatic functional volume segmentation in PET images is a challenge that has been addressed using a large array of methods. A major limitation for the field has been the lack of a benchmark dataset that would allow direct comparison of the results in the various publications. In the present work, we describe a comparison of recent methods on a large dataset following recommendations by the American Association of Physicists in Medicine (AAPM) task group (TG) 211, which was carried out within a MICCAI (Medical Image Computing and Computer Assisted Intervention) challenge.Materials and methods: Organization and funding was provided by France Life Imaging (FLI). A dataset of 176 images combining simulated, phantom and clinical images was assembled. A website allowed the participants to register and download training data (n=19). Challengers then submitted encapsulated pipelines on an online platform that autonomously ran the algorithms on the testing data (n=157) and evaluated the results. The methods were ranked according to the arithmetic mean of sensitivity and positive predictive value.Results: Sixteen teams registered but only four provided manuscripts and pipeline(s) for a total of 10 methods. In addition, results using two thresholds and the Fuzzy Locally Adaptive Bayesian (FLAB) were generated. All competing methods except one performed with median accuracy above 0.8. The method with the highest score was the convolutional neural network-based segmentation, which significantly outperformed 9 out of 12 of the other methods, but not the improved K-Means, Gaussian Model Mixture and Fuzzy C-Means methods.Conclusion: The most rigorous comparative study of PET segmentation algorithms to date was carried out using a dataset that is the largest used in such studies so far. The hierarchy amongst the methods in terms of accuracy did not depend strongly on the subset of datasets or the metrics (or combination of metrics). All the methods submitted by the challengers except one ...
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/29268169; hal-01659162; https://hal.science/hal-01659162; https://hal.science/hal-01659162/document; https://hal.science/hal-01659162/file/manuscript_final.pdf; PUBMED: 29268169
    • الرقم المعرف:
      10.1016/j.media.2017.12.007
    • الدخول الالكتروني :
      https://hal.science/hal-01659162
      https://hal.science/hal-01659162/document
      https://hal.science/hal-01659162/file/manuscript_final.pdf
      https://doi.org/10.1016/j.media.2017.12.007
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.AF38A395