Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A Question answering model for requirements elicitation in the context of software development ; Un modelo preguta-respuesta para la educción de requisitos en el contexto del desarrollo de software
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Calle Gallego, Johnathan Mauricio
- الموضوع:
000 - Ciencias de la computación; información y obras generales::004 - Procesamiento de datos Ciencia de los computadores; Ingeniería de software; Desarrollo del software; Procesamiento del lenguaje natural (Ciencia de computador); Requirements elicitation; Educción de requisitos; Sistemas pregunta respuesta; Procesamiento de lenguaje natural; Reconocimiento de entidades nombradas; Meta-ontología; Question answering systems; Natural language processing; Named entity recognition; Meta-ontology- نوع التسجيلة:
doctoral or postdoctoral thesis- اللغة:
English - الموضوع:
- معلومة اضافية
- Contributors: Zapata Jaramillo, Carlos Mario; Lenguajes Computacionales
- بيانات النشر: Universidad Nacional de Colombia
Medellín - Minas - Doctorado en Ingeniería - Sistemas
Departamento de la Computación y la Decisión
Facultad de Minas
Medellín, Colombia
Universidad Nacional de Colombia - Sede Medellín - الموضوع: 2022
- نبذة مختصرة : ilustraciones, gráficos ; Requirements Elicitation (RE) is focused on identifying and characterizing the stakeholders and their requirements. Such an activity may be challenging as the scope of the software product domain grows, generating errors and delays. Natural Language Processing (NLP) deals with automatically analyzing, understanding, and generating natural language. Software analysts use NLP-based approaches for improving RE, making it more efficient and reliable. However, domain scope and limitation for understanding the writing styles of requirements documents generate significant drawbacks for such approaches. In this Ph.D. Thesis we propose SQUARE (Scalable QUestion Answering for Requirements Elicitation), a novel approach for improving the NLP-based approaches for RE based on Question Answering Systems (QASs), comprising a meta-restricted domain for RE and a rule-based approach for generating RE-related questions and answers. QASs are used for extracting precise and concise answers to natural language questions. The SQUARE model represents a contribution for the NLP-based approaches for RE, allowing software analysts for identifying, extracting, and structuring key abstractions from requirements documents such as actors, actions, and concepts in a more natural way due to its proximity to a real-life RE domain. We validate our proposal by using an experimental process. The SQUARE model is included as a new work product for eliciting requirements. Therefore, the SQUARE model is intended to be an NLP-based approach to RE for software analysts. ; La Educción de Requisitos (ER) se enfoca en identificar y caracterizar a los interesados y sus requisitos. Esta actividad puede ser desafiante a medida que el alcance del dominio del producto de software crece, generando errores y retrasos. El Procesamiento de Lenguaje Natural (PLN) se usa para analizar, entender y generar lenguaje natural automáticamente. Los analistas de software usan enfoques basados en PLN para mejorar la ER, haciéndola más eficiente y ...
- File Description: xv, 115 páginas; application/pdf
- Relation: LaReferencia; Abbott, R. J. (1983). Program Design by Informal English Descriptions. Commun. ACM, 26(11), 882–894. https://doi.org/10.1145/182.358441; Adam, S. (2012). Providing software product line knowledge to requirements engineers - A template for elicitation instructions. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, B. Regnell, & D. Damian (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 7195 LNCS (pp. 147–164). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28714-5_13; Adikara, F., Hendradjaya, B., & Sitohang, B. (2016). Organization goal-oriented requirements elicitation process to enhance information system. International Journal of Electrical and Computer Engineering, 6(6), 3188–3195. https://doi.org/10.11591/ijece.v6i6.12802; Aguilar, C., & Sierra M., G. (2017). Tratamiento de información textual y generación de taxonomías (1st ed.). Instituto de Ingeniería, de la Universidad Autónoma de México.; Aguilera, C., & Berry, D. M. (1990). The use of a repeated phrase finder in requirements extraction. Journal of Systems and Software, 13(3), 209–230. https://doi.org/https://doi.org/10.1016/0164-1212(90)90097-6; Al-Hroob, A., Imam, A. T., & Al-Heisa, R. (2018). The use of artificial neural networks for extracting actions and actors from requirements document. Information and Software Technology, 101, 1–15. https://doi.org/https://doi.org/10.1016/j.infsof.2018.04.010; Alwadain, A., & Alshargi, M. (2019). Crowd-Generated Data Mining for Continuous Requirements Elicitation. International Journal of Advanced Computer Science and Applications, 10(9). https://doi.org/10.14569/IJACSA.2019.0100907; Apaza, R. D. G., Barrios, J. E. M., Becerra, D. A. I., & Quispe, J. A. H. (2018). ERS-TOOL: Hybrid Model for Software Requirements Elicitation in Spanish Language. Proceedings of the International Conference on Geoinformatics and Data Analysis, 27–30. https://doi.org/10.1145/3220228.3220255; Arruda, D., Marinho, M., Souza, E., & Wanderley, F. (2019). A Chatbot for Goal-Oriented Requirements Modeling. In S. Misra, O. Gervasi, B. Murgante, E. Stankova, V. Korkhov, C. Torre, A. M. A. C. Rocha, D. Taniar, B. O. Apduhan, & E. Tarantino (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11622 LNCS (pp. 506–519). Springer International Publishing. https://doi.org/10.1007/978-3-030-24305-0_38; Bakar, N. H., Kasirun, Z. M., Salleh, N., & A.Halim, A. H. (2017). Extracting Software Features From Online Reviews to Demonstrate Requirements Reuse in Software Engineering. 6th International Conference on Computing & Informatics, 49(157), 184–190.; Becu, N., Bousquet, F., Barreteau, O., Perez, P., & Walker, A. (2003). A methodology for eliciting and modelling stakeholders’ representations with agent based modelling. In G. Goos, J. Hartmanis, J. van Leeuwen, D. Hales, B. Edmonds, E. Norling, & J. Rouchier (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2927, pp. 131–148). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24613-8_10; Bisong, E. (2019). Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners (pp. 59–64). Apress. https://doi.org/10.1007/978-1-4842-4470-8_7; Boquist, E. (2014). Automated Dialogue System for Requirements Elicitation Practice. Towson University.; Bouziane, A., Bouchiha, D., Doumi, N., & Malki, M. (2015). Question Answering Systems: Survey and Trends. Procedia Computer Science, 73(Awict), 366–375. https://doi.org/10.1016/j.procs.2015.12.005; Burnay, C., Jureta, I., & Faulkner, S. (2012). Context-Driven Elicitation of Default Requirements: an Empirical Validation. ArXiv: Software Engineering, February 2014. http://arxiv.org/abs/1211.2620; Burnay, C., Jureta, I. J., & Faulkner, S. (2014). What stakeholders will or will not say: A theoretical and empirical study of topic importance in Requirements Engineering elicitation interviews. Information Systems, 46, 61–81. https://doi.org/10.1016/j.is.2014.05.006; Carvalho, G., Barros, F., Carvalho, A., Cavalcanti, A., Mota, A., & Sampaio, A. (2015). NAT2TEST Tool: From Natural Language Requirements to Test Cases Based on CSP. In R. Calinescu & B. Rumpe (Eds.), Software Engineering and Formal Methods (pp. 283–290). Springer International Publishing.; Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., & Blackburn, M. (2014). NAT2TESTSCR: Test case generation from natural language requirements based on SCR specifications. Science of Computer Programming, 95, 275–297. https://doi.org/https://doi.org/10.1016/j.scico.2014.06.007; Casagrande, E., Woldeamlak, S., Woon, W. L., Zeineldin, H. H., & Svetinovic, D. (2014). NLP-KAOS for Systems Goal Elicitation: Smart Metering System Case Study. IEEE Transactions on Software Engineering, 40(10), 941–956. https://doi.org/10.1109/TSE.2014.2339811; Casamayor, A., Godoy, D., & Campo, M. (2010). Identification of non-functional requirements in textual specifications: A semi-supervised learning approach. Information and Software Technology, 52(4), 436–445. https://doi.org/10.1016/j.infsof.2009.10.010; Chen, P. P.-S. (1983). English sentence structure and entity-relationship diagrams. Information Sciences, 29(2), 127–149. https://doi.org/https://doi.org/10.1016/0020-0255(83)90014-2; Christel, M., & Kang, K. (1992). Issues in Requirements Elicitation (Issue CMU/SEI-92-TR-012). http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12553; Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2007). Automated classification of non-functional requirements. Requirements Engineering, 12(2), 103–120. https://doi.org/10.1007/s00766-007-0045-1; Cockburn, A. (1997). Structuring use cases with goals. Journal of Object-Oriented Programming, 10(5), 56–62.; Coulin, C., & Zowghi, D. (2005). Requirements Elicitation: A Survey of Techniques, Approaches, and Tools Didar. Engineering and Managing Software Requirement, 1, 19–41.; Cysneiros, L. M., & Yu, E. (2003). Requirements engineering for large-scale multi-agent systems. In G. Goos, J. Hartmanis, J. van Leeuwen, A. Garcia, C. Lucena, F. Zambonelli, A. Omicini, & J. Castro (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2603, pp. 39–56). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-35828-5_3; Dalpiaz, F., Ferrari, A., Franch, X., & Palomares, C. (2018). Natural Language Processing for Requirements Engineering: The Best Is Yet to Come. IEEE Software, 35(5), 115–119. https://doi.org/10.1109/MS.2018.3571242; Dardenne, A., van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Science of Computer Programming, 20(1–2), 3–50. https://doi.org/10.1016/0167-6423(93)90021-G; Dick, J., Hull, E., & Jackson, K. (2017). Requirements Engineering (4th ed.). Springer, Chan.; Do Prado Leite, J. C. S., & Gilvaz, A. P. P. (1996). Requirements elicitation driven by interviews: The use of viewpoints. Proceedings of the 8th International Workshop on Software Specification and Design, IWSSD 1996, April 1996, 85–94. https://doi.org/10.1109/iwssd.1996.501150; Dubois, E., Hagelstein, J., Rifaut, A., Lahou, E., & Ponsaert, F. (1986). A Knowledge Representation Language for Requirements Engineering. Proceedings of the IEEE, 74(10), 1431–1444. https://doi.org/10.1109/PROC.1986.13644; Düchting, M., Zimmermann, D., & Nebe, K. (2007). Incorporating user centered requirement engineering into agile software development. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, & J. A. Jacko (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 4550 LNCS (Issue PART 1, pp. 58–67). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73105-4_7; Dwitama, F., & Rusli, A. (2020). User stories collection via interactive chatbot to support requirements gathering. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18, 870. https://doi.org/10.12928/telkomnika.v18i2.14866; Escalona, M. J., & Koch, N. (2006). Metamodeling the requirements of Web systems. WEBIST 2006 - 2nd International Conference on Web Information Systems and Technologies, Proceedings, IT(WIA/-), 310–317. https://doi.org/10.1007/978-3-540-74063-6_21; Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2001). An Automatic Quality Evaluation for Natural Language Requirements. In Proceedings of the Seventh International Workshop on RE: Foundation for Software Quality (REFSQ’2001, 4–5.; Ferrari, A., Spagnolo, G. O., & Gnesi, S. (2017). PURE: A Dataset of Public Requirements Documents. Proceedings - 2017 IEEE 25th International Requirements Engineering Conference, RE 2017, September, 502–505. https://doi.org/10.1109/RE.2017.29; Gacitua, R., Sawyer, P., & Gervasi, V. (2010). On the Effectiveness of Abstraction Identification in Requirements Engineering. 2010 18th IEEE International Requirements Engineering Conference, 5–14. https://doi.org/10.1109/RE.2010.12; García, M. (2018). Using NLP and Information Visualization to analyze app reviews. Universiteit Utrecht.; Garzoli, F., Croce, D., Nardini, M., Ciambra, F., & Basili, R. (2013). Robust Requirements Analysis in Complex Systems through Machine Learning. Communications in Computer and Information Science, 379 CCIS, 44–58. https://doi.org/10.1007/978-3-642-45260-4_4; Gause, D. C., & Weinberg, G. M. (1989). Context-Free Questions. In Exploring Requirements: Quality before Design (1st ed., pp. 59–65). Dorset House.; Gelbukh, A. (2013). Natutal language processing: Perspective of CIC-IPN. 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2112–2121. https://doi.org/10.1109/ICACCI.2013.6637507; Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation.; Ghosh, S., Mukherjee, P., Chakraborty, B., & Bashar, R. (2018). Automated Generation of E-R Diagram from a Given Text in Natural Language. 2018 International Conference on Machine Learning and Data Engineering (ICMLDE), 91–96. https://doi.org/10.1109/iCMLDE.2018.00026; Giannakopoulou, D., Pressburger, T., Mavridou, A., & Schumann, J. (2021). Automated formalization of structured natural language requirements. Information and Software Technology, 137, 10–12. https://doi.org/https://doi.org/10.1016/j.infsof.2021.106590; Gilvaz, A. P. P., & do Prado Leite, J. C. S. (1995). FAES: a case tool for information acquisition. Proceedings of the International Workshop on Computer-Aided Software Engineering, July 2014, 260–269. https://doi.org/10.1109/case.1995.465307; Goldin, L., & Berry, D. (1994). AbstFinder, A Prototype Natural Language Text Abstraction Finder for Use in Requirements Elicitation. Automated Software Engineering, 4. https://doi.org/10.1023/A:1008617922496; Gorschek, T., & Wohlin, C. (2006). Requirements abstraction model. Requirements Engineering, 11(1), 79–101. https://doi.org/10.1007/s00766-005-0020-7; Grigorious, R., & Symeonidis, A. (2014). Towards the Design of User Friendly Search Engines for Software Projects. In Natural Language Processing and Information Systems (pp. 164–167). Springer, Chan.; Hayes, J. H., Dekhtyar, A., & Osborne, J. (2003). Improving requirements tracing via information retrieval. Proceedings. 11th IEEE International Requirements Engineering Conference, 2003., 138–147. https://doi.org/10.1109/ICRE.2003.1232745; Honnibal, M., & Montani, I. (2017). {spaCy 2}: Natural language understanding with {B}loom embeddings, convolutional neural networks and incremental parsing.; Hunt, J. (1997). The Object Modeling Technique. Smalltalk and Object Orientation, 184–195. https://doi.org/10.1007/978-1-4471-0961-7_19; Iqbal, S., Al-Azzoni, I., Allen, G., & Khan, H. U. (2020). Extending UML use case diagrams to represent non-interactive functional requirements. E-Informatica Software Engineering Journal, 14(1), 97–115. https://doi.org/10.37190/E-INF200104; Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., & Zettlemoyer, L. (2017). Learning a Neural Semantic Parser from User Feedback. 963–973. https://doi.org/10.18653/v1/P17-1089; Jacobson, I., Spence, I., & Kerr, B. (2016). Use-case 2.0: The hub of software development. Queue, 14(1), 94–123. https://doi.org/10.1145/2898442.2912151; Janssens, D. (2019). Natural Language Processing in Requirements Elicitation and Analysis: A Systematic Literature Review. Universiteit Utrecht.; Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., & Horkoff, J. (2014). An Exploratory Study of Topic Importance in Requirements Elicitation Interviews. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8484 LNCS(October). https://doi.org/10.1007/978-3-319-07881-6; Johann, T., Stanik, C., Alizadeh B., A. M., & Maalej, W. (2017). SAFE: A Simple Approach for Feature Extraction from App Descriptions and App Reviews. 2017 IEEE 25th International Requirements Engineering Conference (RE), 21–30. https://doi.org/10.1109/RE.2017.71; Jurafsky, D., & Martin, J. (2021). Speech and Language Processing. 3rd. (Draft). Prentice Hall.; Jurafsky, D., & Martin, J. H. (2009). Speech and Language Processing (2nd Edition). Prentice-Hall, Inc.; Jureta, I. J., Mylopoulos, J., & Faulkner, S. (2008). Revisiting the core ontology and problem in requirements engineering. Proceedings of the 16th IEEE International Requirements Engineering Conference, RE’08, December, 71–80. https://doi.org/10.1109/RE.2008.13; Kaiya, H., Shinbara, D., Kawano, J., & Saeki, M. (2005). Improving the detection of requirements discordances among stakeholders. Requirements Engineering, 10(4), 289–303. https://doi.org/10.1007/s00766-005-0017-2; Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., & Yih, W. (2020). Dense Passage Retrieval for Open-Domain Question Answering. Conference on Empirical Methods in Natural Language Processing (EMNLP), 6769–6781. https://doi.org/10.18653/v1/2020.emnlp-main.550; Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic Literature Reviews in Software Engineering - A Systematic Literature Review. Inf. Softw. Technol., 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009; Kiyavitskaya, N., Zeni, N., Breaux, T. D., Antón, A. I., Cordy, J. R., Luisa, M., & Mylopoulos, J. (2008). Automating the Extraction of Rights and Obligations for Regulatory Compliance. International Conference on Conceptual Modeling, 5231, 154–168.; Knublauch, H., Fergerson, R. W., Noy, N., & Musen, M. A. (2004). The Protégé OWL Plugin: An Open Development Environment for Semantic Web Applications. SEMWEB.; Kof, L. (2004). Natural Language Processing for Requirements Engineering: Applicability to Large Requirements Documents. Proceedings of the Workshops, 19th International Conference Conference on Automated Software Engineering, 1–11. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.5849&rep=rep1&type=pdf; Körner, S. J., & Landhäußer, M. (2010). Semantic Enriching of Natural Language Texts with Automatic Thematic Role Annotation. In Springer-Verlag (Ed.), Proceedings of the Natural language processing and information systems, and 15th international conference on Applications of natural language to information systems (pp. 92–99). http://dl.acm.org/citation.cfm?id=1894525.1894537; Krish, S. (2006). An Ontology Based Approach To Automated Domain-Specific SRS Development. National Conference on Recent Advances in Computing. Kücherer, C., & Paech, B. (2018). Task-oriented requirements engineering for personal decision support systems. In S. Hammoudi, M. Śmiałek, O. Camp, & J. Filipe (Eds.), Lecture Notes in Business Information Processing (Vol. 321, pp. 212–238). Springer International Publishing. https://doi.org/10.1007/978-3-319-93375-7_11; Laiq, M., & Dieste, O. (2020). Chatbot-based Interview Simulator: A Feasible Approach to Train Novice Requirements Engineers. 2020 10th International Workshop on Requirements Engineering Education and Training (REET), 1–8. https://doi.org/10.1109/REET51203.2020.00007; Lapouchnian, A. (2005). Goal-Oriented Requirements Engineering : An Overview of the Current Research. Requirements Engineering, 8(3), 32. https://doi.org/10.1007/s00766-003-0178-9; Ledeneva, Y. (2010). Recent Advances in Computational Linguistics Levels of language and areas of computational linguistic research. Informatica, 34, 3–18.; Li, M., Yang, Y., Shi, L., Wang, Q., Hu, J., Peng, X., Liao, W., & Pi, G. (2020). Automated Extraction of Requirement Entities by Leveraging LSTM-CRF and Transfer Learning. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), 208–219. https://doi.org/10.1109/ICSME46990.2020.00029; Lian, X., Liu, W., & Zhang, L. (2020). Assisting engineers extracting requirements on components from domain documents. Information and Software Technology, 118, 106196. https://doi.org/https://doi.org/10.1016/j.infsof.2019.106196; Lim, S., Henriksson, A., & Zdravkovic, J. (2021). Data-Driven Requirements Elicitation: A Systematic Literature Review. SN Computer Science, 2(1), 16. https://doi.org/10.1007/s42979-020-00416-4; Maalej, W., Kurtanović, Z., Nabil, H., & Stanik, C. (2016). On the automatic classification of app reviews. Requirements Engineering, 21(3), 311–331. https://doi.org/10.1007/s00766-016-0251-9; Madala, K., Piparia, S., Blanco, E., Do, H., & Bryce, R. (2021). Model elements identification using neural networks: a comprehensive study. Requirements Engineering, 26(1), 67–96. https://doi.org/10.1007/s00766-020-00332-2; Maiden, N., Lockerbie, J., Zachos, K., Bertolino, A., De Angelis, G., & Lonetti, F. (2014). A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies: An Experience Report BT - Requirements Engineering: Foundation for Software Quality (C. Salinesi & I. van de Weerd (eds.); pp. 239–253). Springer International Publishing.; Manago, M., Conruyt, N., & Le Renard, J. (1992). Acquiring descriptive knowledge for classification and identification. In J. Siekmann, G. Goos, J. Hartmanis, T. Wetter, K.-D. Althoff, J. Boose, B. R. Gaines, M. Linster, & F. Schmalhofer (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 599 LNAI (pp. 392–405). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-55546-3_52; Manrique, B. (2014). A formalization for mapping discourses from business-based technical documents into controlled language texts for requirements elicitation [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/46419/; McZara, J., Sarkani, S., Holzer, T., & Eveleigh, T. (2015). Software requirements prioritization and selection using linguistic tools and constraint solvers—a controlled experiment. Empirical Software Engineering, 20(6), 1721–1761. https://doi.org/10.1007/s10664-014-9334-8; Mich, L. (1996). NL-OOPS: from natural language to object oriented requirements using the natural language processing system LOLITA. Natural Language Engineering, 2, 161–187. https://doi.org/10.1017/S1351324996001337; Minock, M. (2005). Where are the ‘killer applications’ of restricted domain question answering. Proceedings of the IJCAI Workshop on Knowledge Reasoning in Question Answering, 4. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.5922&rep=rep1&type=pdf; Mohammadi, N. G., & Heisel, M. (2016). A framework for systematic analysis and modeling of trustworthiness requirements using i* and BPMN. In S. Katsikas, C. Lambrinoudakis, & S. Furnell (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 9830 LNCS (pp. 3–18). Springer International Publishing. https://doi.org/10.1007/978-3-319-44341-6_1; Moitra, A., Siu, K., Crapo, A. W., Durling, M., Li, M., Manolios, P., Meiners, M., & McMillan, C. (2019). Automating requirements analysis and test case generation. Requirements Engineering, 24(3), 341–364. https://doi.org/10.1007/s00766-019-00316-x; Montani, I., & Honnibal, M. (2018). Prodigy: A new annotation tool for radically efficient machine teaching. Artificial Intelligence, to appear.; Morales-Ramirez, I., Kifetew, F. M., & Perini, A. (2019). Speech-acts based analysis for requirements discovery from online discussions. Information Systems, 86, 94–112. https://doi.org/https://doi.org/10.1016/j.is.2018.08.003; Morales-Ramirez, I., Vergne, M., Morandini, M., Sabatucci, L., Perini, A., & Susi, A. (2012). Where did the requirements come from? A retrospective case study. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, S. Castano, P. Vassiliadis, L. V Lakshmanan, & M. L. Lee (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 7518 LNCS (pp. 185–194). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33999-8_23; Murugesh, S., & Jaya, A. (2021). An integrated approach towards automated software requirements elicitation from unstructured documents. J. Ambient Intell. Humaniz. Comput., 12(3), 3763–3773. https://doi.org/10.1007/s12652-019-01667-7; Nath, R. (2007). Object Oriented Design and Modeling. www.ddegjust.ac.in/studymaterial/mca-5/mca-503.pdf; Nguyen, T. H., Grundy, J., & Almorsy, M. (2015). Rule-Based Extraction of Goal-Use Case Models from Text. Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, 591–601. https://doi.org/10.1145/2786805.2786876; Nwana, H. S., Paton, R. C., Shave, M. J. R., & Bench-Capon, T. J. M. (1992). Domain-driven knowledge modelling: Mediating intermediate representations for knowledge acquisition. In J. Siekmann, G. Goos, J. Hartmanis, T. Wetter, K.-D. Althoff, J. Boose, B. R. Gaines, M. Linster, & F. Schmalhofer (Eds.), Lecture Notes in Computer Science: Vol. 599 LNAI (pp. 250–263). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-55546-3_44; Ochodek, M., & Nawrocki, J. (2008). Automatic transactions identification in use cases. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 5082 LNCS (pp. 55–68). https://doi.org/10.1007/978-3-540-85279-7_5; Pacheco, C., García, I., & Reyes, M. (2018). Requirements elicitation techniques: a systematic literature review based on the maturity of the techniques. IET Software, 12(4), 365–378.; Perepletchikov, M., & Padgham, L. (2005). Use case and actor driven requirements engineering: An evaluation of modifications to prometheus. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, M. Pěchouček, P. Petta, & L. Z. Varga (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 3690 LNAI (pp. 203–212). Springer Berlin Heidelberg. https://doi.org/10.1007/11559221_21; Prendergast, M. D. (2021). Automated Extraction and Classification of Slot Machine Requirements from Gaming Regulations. 2021 IEEE International Systems Conference (SysCon), 1–6. https://doi.org/10.1109/SysCon48628.2021.9447144; Raharjana, I. K., Siahaan, D., & Fatichah, C. (2019). User Story Extraction from Online News for Software Requirements Elicitation: A Conceptual Model. JCSSE 2019 - 16th International Joint Conference on Computer Science and Software Engineering: Knowledge Evolution Towards Singularity of Man-Machine Intelligence, 342–347. https://doi.org/10.1109/JCSSE.2019.8864199; Raharjana, I. K., Siahaan, D., & Fatichah, C. (2021). User Stories and Natural Language Processing: A Systematic Literature Review. IEEE Access, 9, 53811–53826. https://doi.org/10.1109/ACCESS.2021.3070606; Rajender Kumar Surana, C. S., Shriya, Gupta, Di. B., & Shankar, S. P. (2019). Intelligent Chatbot for Requirements Elicitation and Classification. 2019 4th IEEE International Conference on Recent Trends on Electronics, Information, Communication and Technology, RTEICT 2019 - Proceedings, 866–870. https://doi.org/10.1109/RTEICT46194.2019.9016907; Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). SQuAD: 100,000+ Questions for Machine Comprehension of Text. Conference on Empirical Methods in Natural Language Processing, 2383–2392. https://doi.org/10.18653/v1/D16-1264; Rana, Y., & Tamara, A. (2015). An enhanced requirements elicitation framework based on business process models. Scientific Research and Essays, 10(7), 279–286. https://doi.org/10.5897/sre2014.6138; Reddy, A. C. O., & Madhavi, K. (2017). A Survey on Types of Question Answering System. 19(6), 19–23. https://doi.org/10.9790/0661-1906041923; Rizk, N. M., Nasr, E. S., & Gheith, M. H. (2019). Enhancing CREeLS the Crowdsourcing based Requirements Elicitation approach for eLearning Systems Using Bi-Gram Evaluation. 2019 15th International Computer Engineering Conference (ICENCO), 222–226. https://doi.org/10.1109/ICENCO48310.2019.9027371; Robertson, S., & Robertson, J. (2012). Mastering the requirement process: getting requirements right (Third). Pearson Education.; Rolland, C., Ben Achour, C., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N., Jarke, M., Haumer, P., Pohl, K., Dubois, E., & Heymans, P. (1998). A proposal for a scenario classification framework. Requirements Engineering, 3(1), 23–47. https://doi.org/10.1007/bf02802919; Rolland, C., & Proix, C. (1992). A natural language approach for Requirements Engineering. In P. Loucopoulos (Ed.), Advanced Information Systems Engineering (pp. 257–277). Springer Berlin Heidelberg.; Ross, D. T., & Schoman, K. E. (1977). Structured Analysis for Requirements Definition. IEEE Transactions on Software Engineering, SE-3(1), 6–15. https://doi.org/10.1109/TSE.1977.229899; Salleh, N. M., & Nohuddin, P. N. E. (2019). Hybrid requirement elicitation techniques with lean six sigma methodology for an enhanced framework. In H. Badioze Zaman, A. F. Smeaton, T. K. Shih, S. Velastin, T. Terutoshi, N. Mohamad Ali, & M. N. Ahmad (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11870 LNCS (pp. 190–201). Springer International Publishing. https://doi.org/10.1007/978-3-030-34032-2_18; Sannier, N., Adedjouma, M., Sabetzadeh, M., & Briand, L. (2017). An automated framework for detection and resolution of cross references in legal texts. Requirements Engineering, 22(2), 215–237. https://doi.org/10.1007/s00766-015-0241-3; Shakeri Hossein Abad, Z., Gervasi, V., Zowghi, D., & Barker, K. (2018). ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information. 2018 5th International Workshop on Artificial Intelligence for Requirements Engineering (AIRE), 8–14. https://doi.org/10.1109/AIRE.2018.00007; hakeri, Z., Gervasi, V., Zowghi, D., & Barker, K. (2018, July 20). ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information. IEEE 26th International Requirements Engineering Conference Workshops.; Shi, L., Chen, C., Wang, Q., & Boehm, B. W. (2021). Automatically detecting feature requests from development emails by leveraging semantic sequence mining. Requir. Eng., 26(2), 255–271. https://doi.org/10.1007/s00766-020-00344-y; Sleimi, A., Ceci, M., Sannier, N., Sabetzadeh, M., Briand, L., & Dann, J. (2019). A Query System for Extracting Requirements-Related Information from Legal Texts. 2019 IEEE 27th International Requirements Engineering Conference (RE), 319–329. https://doi.org/10.1109/RE.2019.00041; Sleimi, A., Sannier, N., Sabetzadeh, M., Briand, L., & Dann, J. (2018). Automated Extraction of Semantic Legal Metadata using Natural Language Processing. 2018 IEEE 26th International Requirements Engineering Conference (RE), 124–135. https://doi.org/10.1109/RE.2018.00022; Sommerville, I. (2015). Software Engineering (10th ed.). Pearson.; Souag, A., Salinesi, C., Mazo, R., & Comyn-Wattiau, I. (2015). A security ontology for security requirements elicitation. In F. Piessens, J. Caballero, & N. Bielova (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8978, pp. 157–177). Springer International Publishing. https://doi.org/10.1007/978-3-319-15618-7_13; Spanoudakis, G., Zisman, A., Pérez-Miñana, E., & Krause, P. (2004). Rule-based generation of requirements traceability relations. Journal of Systems and Software, 72(2), 105–127. https://doi.org/https://doi.org/10.1016/S0164-1212(03)00242-5; Sun, P., Yang, X., Zhao, X., & Wang, Z. (2019). An Overview of Named Entity Recognition. Proceedings of the 2018 International Conference on Asian Language Processing, IALP 2018, 273–278. https://doi.org/10.1109/IALP.2018.8629225; Suryn, W. (2014). Software Engineering: A Practitioner’s Approach. In Software Quality Engineering: A Practitioner’s Approach (Vol. 9781118592). https://doi.org/10.1002/9781118830208; Sutcliffe, A., Thew, S., & Jarvis, P. (2011). Experience with user-centred requirements engineering. Requirements Engineering, 16(4), 267–280. https://doi.org/10.1007/s00766-011-0118-z; Van Lamsweerde, A. (2000). Requirements Engineering in the Year 00: A Research Perspective. ICSE ’00 Proceedings of the 22nd International Conference on Software Engineering, 5–19. https://doi.org/10.1145/337180.337184; Vlas, R., & Robinson, W. N. (2011). A rule-based natural language technique for requirements discovery and classification in open-source software development projects. Proceedings of the Annual Hawaii International Conference on System Sciences, 1–10. https://doi.org/10.1109/HICSS.2011.28; Wang, M., & Zeng, Y. (2009). Asking the right questions to elicit product requirements. International Journal of Computer Integrated Manufacturing, 22(4), 283–298. https://doi.org/10.1080/09511920802232902; Wieringa, R. J. (2014). Design science methodology: For information systems and software engineering. In Design Science Methodology: For Information Systems and Software Engineering. https://doi.org/10.1007/978-3-662-43839-8; Wijers, G. M., & Heijes, H. (1990). Automated support of the modelling process: A view based on experiments with expert information engineers. In R. King (Ed.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 436 LNCS (pp. 88–108). Springer International Publishing. https://doi.org/10.1007/BFb0000588; Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in software engineering. In Experimentation in Software Engineering (Vol. 9783642290442). https://doi.org/10.1007/978-3-642-29044-2; Wolfson, T., Geva, M., Gupta, A., Gardner, M., Goldberg, Y., Deutch, D., & Berant, J. (2020). Break It Down: A Question Understanding Benchmark. Transactions of the Association for Computational Linguistics, 8, 183–198. https://doi.org/10.1162/tacl_a_00309; Xu, J. Y., & Wang, Y. (2020). Formal Software Requirement Elicitation based on Semantic Algebra and Cognitive Computing. 2020 IEEE 19th International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC), 187–194. https://doi.org/10.1109/ICCICC50026.2020.9450275; Yamanaka, T., Noguchi, H., Yato, S., & Komiya, S. (2010). Proposal of a method to navigate interview-driven software requirements elicitation work. Proceedings of the 9th WSEAS International Conference on Applications of Computer Engineering, ACE ’10, December 2010, 125–131.; Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing [Review Article]. IEEE Computational Intelligence Magazine, 13(3), 55–75. https://doi.org/10.1109/MCI.2018.2840738; Zapata, Carlos M., Giraldo, G. L., & Mesa, J. E. (2010). Una propuesta de metaontología para la educción de requisitos. Ingeniare, 18(1), 26–37. https://doi.org/10.4067/s0718-33052010000100004; Zapata, Carlos Mario, & Carmona, N. (2010). Un Modelo De Dialogo Para Los Requisitos De Software. Dyna, 77(164), 209–219. http://www.scielo.org.co/pdf/dyna/v77n164/a21v77n164.pdf182301&partnerID=40&md5=bb027d0537c4a06b753bbcd1590e41ea; Zapata, Carlos Mario, Chaverra, J., & Vill, H. (2012). Un caso de estudio para la generación automática de código a partir de esquemas preconceptuales A study case for automatic code generation based on pre-conceptual schemas. Cuaderno ACTIVA, Tecnológico de Antioquia, 4(4), 9–24.; Zelle, J. M., & Mooney, R. J. (1996). Learning to Parse Database Queries Using Inductive Logic Programming. Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 2, 1050–1055.; Zeni, N., Kiyavitskaya, N., Mich, L., Cordy, J. R., & Mylopoulos, J. (2015). GaiusT: supporting the extraction of rights and obligations for regulatory compliance. Requirements Engineering, 20(1), 1–22. https://doi.org/10.1007/s00766-013-0181-8; Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J., Ajagbe, M. A., Chioasca, E.-V., & Batista-Navarro, R. T. (2021). Natural Language Processing for Requirements Engineering: A Systematic Mapping Study. ACM Comput. Surv., 54(3). https://doi.org/10.1145/3444689; Zhong, H., Zhang, L., Xie, T., & Mei, H. (2009). Inferring Resource Specifications from Natural Language API Documentation. ASE2009 - 24th IEEE/ACM International Conference on Automated Software Engineering, 307–318. https://doi.org/10.1109/ASE.2009.94; https://repositorio.unal.edu.co/handle/unal/83008; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
- Rights: Reconocimiento 4.0 Internacional ; http://creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess
- الرقم المعرف: edsbas.AE677781
- Contributors:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.