Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Mitigation Strategies to Improve Reproducibility of Poverty Estimations From Remote Sensing Images Using Deep Learning

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Departamento de Engenharia da Produção São Paulo (EPUSP); Escola Politecnica da Universidade de Sao Paulo Sao Paulo; Fondation pour la recherche sur la Biodiversité (FRB); Université de la Manouba Tunisie (UMA); The University of Queensland (UQ All campuses : Brisbane, Dutton Park Gatton, Herston, St Lucia and other locations ); European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL); Image & Interaction (LIRMM; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM); Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM); UMR 228 Espace-Dev, Espace pour le développement; Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de la Nouvelle-Calédonie (UNC)-Université de Guyane (UG)-Université des Antilles (UA)-Université de Montpellier (UM); American Geophysical Union Washington; Université de Nîmes (UNIMES); MARine Biodiversity Exploitation and Conservation - Station Ifremer Palavas (UMR MARBEC PALAVAS); MARine Biodiversity Exploitation and Conservation - MARBEC (UMR MARBEC); Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM); Université de Montpellier (UM); ANR-18-BELM-0002,PARSEC,Building New Tools for Data Sharing and Reuse through a Transnational Investigation of the Socioeconomic Impacts of Protected(2018)
    • بيانات النشر:
      CCSD
      American Geophysical Union/Wiley
    • الموضوع:
      2022
    • Collection:
      Université de Guyane: HAL-UG
    • نبذة مختصرة :
      International audience ; The challenges of Reproducibility and Replicability (R & R) in computer science experiments have become a focus of attention in the last decade, as efforts to adhere to good research practices have increased. However, experiments using Deep Learning (DL) remain difficult to reproduce due to the complexity of the techniques used. Challenges such as estimating poverty indicators (e.g. wealth index levels) from remote sensing imagery, requiring the use of huge volumes of data across different geographic locations, would be impossible without the use of DL technology. To test the reproducibility of DL experiments, we report a review of the reproducibility of three DL experiments which analyse visual indicators from satellite and street imagery. For each experiment, we identify the challenges found in the datasets, methods and workflows used. As a result of this assessment we propose a checklist incorporating relevant FAIR principles to screen an experiment for its reproducibility. Based on the lessons learned from this study, we recommend a set of actions aimed to improve the reproducibility of such experiments and reduce the likelihood of wasted effort. We believe that the target audience is broad, from researchers seeking to reproduce an experiment, authors reporting an experiment, or reviewers seeking to assess the work of others.
    • الرقم المعرف:
      10.1029/2022ea002379
    • الدخول الالكتروني :
      https://hal.science/hal-03761874
      https://hal.science/hal-03761874v1/document
      https://hal.science/hal-03761874v1/file/Earth%20and%20Space%20Science%20-%202022%20-%20Machicao%20-%20Mitigation%20Strategies%20to%20Improve%20Reproducibility%20of%20Poverty%20Estimations%20From.pdf
      https://doi.org/10.1029/2022ea002379
    • Rights:
      http://creativecommons.org/licenses/by-nc/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.AD435D01