Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

3DMASC: Accessible, explainable 3D point clouds classification. Application to Bi-Spectral Topo-Bathymetric lidar data

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Géosciences Rennes (GR); Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR); Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS); Observation de l’environnement par imagerie complexe (OBELIX); SIGNAL, IMAGE ET LANGAGE (IRISA-D6); Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT); Observatoire des Sciences de l'Univers de Rennes (OSUR); Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Johnson & Johnson Corporation; Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG); Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (Nantes Univ - IGARUN); Nantes Université - pôle Humanités; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Humanités; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ); ARED Grant and Support from Saur Group
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2023
    • Collection:
      Archive Ouverte de l'Université Rennes (HAL)
    • نبذة مختصرة :
      Three-dimensional data have become increasingly present in earth observation over the last decades and, more recently, with the development of accessible 3D sensing technologies. However, many 3D surveys are still underexploited due to the lack of accessible and explainable automatic classification methods. In this work, we introduce explainable machine learning for 3D data classification using Multiple Attributes, Scales, and Clouds under 3DMASC, a new workflow. It handles multiple clouds at once, including or not spectral and multiple returns attributes. Through 3DMASC, we use classical 3D data multi-scale descriptors and new ones based on the spatial variations of geometrical, spectral and height-based features of the local point cloud. We also introduce dual-cloud features, encrypting local spectral and geometrical ratios and differences, which improve the interpretation of multi-cloud surveys. 3DMASC thus offers new possibilities for point cloud classification, namely for the interpretation of bi-spectral lidar data. Here, we experiment on topo-bathymetric lidar data, which are acquired using two lasers at infrared and green wavelengths, and feature two irregular point clouds characterized by different samplings of vegetated and flooded areas, that 3DMASC can harvest. By exploring the contributions of 88 features and 30 scalesincluding two types of neighborhoodswe identify a core set of features and scales particularly relevant for coastal and riverine scenes description, and give indications on how to build an optimal predictor vector to train 3D data classifiers. Our findings highlight the predominance of lidar return-based attributes over classical features based on dimensionality or eigenvalues, and the significant contribution of spectral information to the detection of more than a dozen of land and sea coversartificial/vegetated/rocky/bare ground, rocky/sandy seabed, intermediate/high vegetation, buildings, vehicles, power lines. The experimental results show that 3DMASC competes with state-of-the-art ...
    • Relation:
      hal-04072068; https://hal.science/hal-04072068; https://hal.science/hal-04072068/document; https://hal.science/hal-04072068/file/3DMASC_ISPRS_submitted_version.pdf
    • الدخول الالكتروني :
      https://hal.science/hal-04072068
      https://hal.science/hal-04072068/document
      https://hal.science/hal-04072068/file/3DMASC_ISPRS_submitted_version.pdf
    • Rights:
      http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.AC75A3D