Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Efficient Autoprecoder-based deep learning for massive MU-MIMO Downlink under PA Non-Linearities

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Conservatoire National des Arts et Métiers CNAM (CNAM); CEDRIC. Traitement du signal et architectures électroniques (CEDRIC - LAETITIA); Centre d'études et de recherche en informatique et communications (CEDRIC); Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers CNAM (CNAM)-Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers CNAM (CNAM); Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI); Direction de Recherche Technologique (CEA) (DRT (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA); CEDRIC. Données complexes, apprentissage et représentations (CEDRIC - VERTIGO)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2022
    • Collection:
      HAL-CEA (Commissariat à l'énergie atomique et aux énergies alternatives)
    • الموضوع:
    • نبذة مختصرة :
      International audience ; This paper introduces a new efficient autoprecoder (AP) based deep learning approach for massive multiple-input multiple-output (mMIMO) downlink systems in which the base station is equipped with a large number of antennas with energy-efficient power amplifiers (PAs) and serves multiple user terminals. We present AP-mMIMO, a new method that jointly eliminates the multiuser interference and compensates the severe nonlinear (NL) PA distortions. Unlike previous works, AP-mMIMO has a low computational complexity, making it suitable for a global energy-efficient system. Specifically, we aim to design the PA-aware precoder and the receive decoder by leveraging the concept of autoprecoder, whereas the end-to-end massive multiuser (MU)-MIMO downlink is designed using a deep neural network (NN). Most importantly, the proposed AP-mMIMO is suited for the varying block fading channel scenario. To deal with such scenarios, we consider a two-stage precoding scheme: 1) a NN-precoder is used to address the PA non-linearities and 2) a linear precoder is used to suppress the multiuser interference. The NN-precoder and the receive decoder are trained off-line and when the channel varies, only the linear precoder changes on-line. This latter is designed by using the widely used zero-forcing precoding scheme or its lowcomplexity version based on matrix polynomials. Numerical simulations show that the proposed AP-mMIMO approach achieves competitive performance with a significantly lower complexity compared to existing literature. Index Terms-multiuser (MU) precoding, massive multipleinput multiple-output (MIMO), energy-efficiency, hardware impairment, power amplifier (PA) nonlinearities, autoprecoder, deep learning, neural network (NN)
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2202.03190; hal-03551457; https://hal.science/hal-03551457; https://hal.science/hal-03551457/document; https://hal.science/hal-03551457/file/conference_101719.pdf; ARXIV: 2202.03190
    • الدخول الالكتروني :
      https://hal.science/hal-03551457
      https://hal.science/hal-03551457/document
      https://hal.science/hal-03551457/file/conference_101719.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.AC678B1E