Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Central limit theorem for the multilevel Monte Carlo Euler method

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Mathématiques Raphaël Salem (LMRS); Université de Rouen Normandie (UNIROUEN); Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS); Laboratoire Analyse, Géométrie et Applications (LAGA); Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      Institute of Mathematical Statistics (IMS)
    • الموضوع:
      2015
    • Collection:
      Université Paris Lumières: HAL
    • نبذة مختصرة :
      Published in at http://dx.doi.org/10.1214/13-AAP993 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org) ; International audience ; This paper focuses on studying the multilevel Monte Carlo method recently introduced by Giles [Oper. Res. 56 (2008) 607-617] which is significantly more efficient than the classical Monte Carlo one. Our aim is to prove a central limit theorem of Lindeberg-Feller type for the multilevel Monte Carlo method associated with the Euler discretization scheme. To do so, we prove first a stable law convergence theorem, in the spirit of Jacod and Protter [Ann. Probab. 26 (1998) 267-307], for the Euler scheme error on two consecutive levels of the algorithm. This leads to an accurate description of the optimal choice of parameters and to an explicit characterization of the limiting variance in the central limit theorem of the algorithm. A complexity of the multilevel Monte Carlo algorithm is carried out.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1501.06365; hal-02332484; https://normandie-univ.hal.science/hal-02332484; https://normandie-univ.hal.science/hal-02332484/document; https://normandie-univ.hal.science/hal-02332484/file/1501.06365.pdf; ARXIV: 1501.06365
    • الرقم المعرف:
      10.1214/13-AAP993
    • الدخول الالكتروني :
      https://normandie-univ.hal.science/hal-02332484
      https://normandie-univ.hal.science/hal-02332484/document
      https://normandie-univ.hal.science/hal-02332484/file/1501.06365.pdf
      https://doi.org/10.1214/13-AAP993
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.AC593650