Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae): identification of its main active constituent, structure-activity relationship studies and gene expression profiling

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      BioMed Central Ltd
      University of Cape Town
      Faculty of Health Sciences
      Division of Clinical Pharmacology
    • الموضوع:
      2011
    • Collection:
      University of Cape Town: OpenUCT
    • نبذة مختصرة :
      BACKGROUND: Anti-malarial drug resistance threatens to undermine efforts to eliminate this deadly disease. The resulting omnipresent requirement for drugs with novel modes of action prompted a national consortium initiative to discover new anti-plasmodial agents from South African medicinal plants. One of the plants selected for investigation was Dicoma anomala subsp. gerrardii, based on its ethnomedicinal profile. METHODS: Standard phytochemical analysis techniques, including solvent-solvent extraction, thin-layer- and column chromatography, were used to isolate the main active constituent of Dicoma anomala subsp. gerrardii. The crystallized pure compound was identified using nuclear magnetic resonance spectroscopy, mass spectrometry and X-ray crystallography. The compound was tested in vitro on Plasmodium falciparum cultures using the parasite lactate dehydrogenase (pLDH) assay and was found to have anti-malarial activity. To determine the functional groups responsible for the activity, a small collection of synthetic analogues was generated - the aim being to vary features proposed as likely to be related to the anti-malarial activity and to quantify the effect of the modifications in vitro using the pLDH assay. The effects of the pure compound on the P. falciparum transcriptome were subsequently investigated by treating ring-stage parasites (alongside untreated controls), followed by oligonucleotide microarray- and data analysis. RESULTS: The main active constituent was identified as dehydrobrachylaenolide, a eudesmanolide-type sesquiterpene lactone. The compound demonstrated an in vitro IC50 of 1.865 muM against a chloroquine-sensitive strain (D10) of P. falciparum. Synthetic analogues of the compound confirmed an absolute requirement that the alpha-methylene lactone be present in the eudesmanolide before significant anti-malarial activity was observed. This feature is absent in the artemisinins and suggests a different mode of action. Microarray data analysis identified 572 unique genes that were ...
    • File Description:
      application/pdf
    • Relation:
      http://hdl.handle.net/11427/14890; http://dx.doi.org/10.1186/1475-2875-10-295; https://open.uct.ac.za/bitstream/11427/14890/1/Becker_In_vitro_anti_plasmodial_activity_2011.pdf
    • الرقم المعرف:
      10.1186/1475-2875-10-295
    • الدخول الالكتروني :
      http://hdl.handle.net/11427/14890
      https://doi.org/10.1186/1475-2875-10-295
      https://open.uct.ac.za/bitstream/11427/14890/1/Becker_In_vitro_anti_plasmodial_activity_2011.pdf
    • Rights:
      This is an Open Access article distributed under the terms of the Creative Commons Attribution License ; http://creativecommons.org/licenses/by/2.0 ; 2011 Becker et al; licensee BioMed Central Ltd.
    • الرقم المعرف:
      edsbas.AC568FE7