Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Nonparametric Estimation in a Multiplicative Censoring Model with Symmetric Noise

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145); Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions - CNRS Mathématiques (INSMI-CNRS)-Centre National de la Recherche Scientifique (CNRS); Statistique pour le Vivant et l’Homme (SVH); Laboratoire Jean Kuntzmann (LJK ); Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
    • بيانات النشر:
      HAL CCSD
      American Statistical Association
    • الموضوع:
      2016
    • Collection:
      Université Grenoble Alpes: HAL
    • نبذة مختصرة :
      International audience ; We consider the model Yi = XiUi, i =1,. . , n, where the Xi, the Ui and thus the Yi are all independent and identically distributed. The Xi have density f and are the variables of interest, the Ui are multiplicative noise with uniform density on [1-a, 1+a], for some 0 < a < 1, and the two sequences are independent. However, only the Yi are observed. We study nonparametric estimation of both the density f and the corresponding survival function. In each context, a projection estimator of an auxiliary function is built, from which estimator of the function of interest is deduced. Risk bounds in term of integrated squared error are provided, showing that the dimension parameter associated with the projection step has to perform a compromise. Thus, a model selection strategy is proposed in both cases of density and survival function estimation. The resulting estimators are proven to reach the best possible risk bounds. Simulation experiments illustrate the good performances of the estimators and a real data example is described.
    • Relation:
      hal-01252780; https://hal.science/hal-01252780; https://hal.science/hal-01252780/document; https://hal.science/hal-01252780/file/mult_censoring_07012016.pdf
    • الرقم المعرف:
      10.1080/10485252.2016.1225737
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.AAC17DF7