نبذة مختصرة : Stochastic simulation has been widely applied in many domains. More recently, however, the rapid surge of sophisticated problems such as safety evaluation of intelligent systems has posed various challenges to conventional statistical methods. Motivated by these challenges, in this thesis, we develop novel methodologies with theoretical guarantees and numerical applications to tackle them from different perspectives. In particular, our works can be categorized into two areas: (1) rare-event estimation (Chapters 2 to 5) where we develop approaches to estimating the probabilities of rare events via simulation; (2) model calibration (Chapters 6 and 7) where we aim at calibrating the simulation model so that it is close to reality. In Chapter 2, we study rare-event simulation for a class of problems where the target hitting sets of interest are defined via modern machine learning tools such as neural networks and random forests. We investigate an importance sampling scheme that integrates the dominating point machinery in large deviations and sequential mixed integer programming to locate the underlying dominating points. We provide efficiency guarantees and numerical demonstration of our approach. In Chapter 3, we propose a new efficiency criterion for importance sampling, which we call probabilistic efficiency. Conventionally, an estimator is regarded as efficient if its relative error is sufficiently controlled. It is widely known that when a rare-event set contains multiple "important regions" encoded by the dominating points, importance sampling needs to account for all of them via mixing to achieve efficiency. We argue that the traditional analysis recipe could suffer from intrinsic looseness by using relative error as an efficiency criterion. Thus, we propose the new efficiency notion to tighten this gap. In particular, we show that under the standard Gartner-Ellis large deviations regime, an importance sampling that uses only the most significant dominating points is sufficient to attain this efficiency ...
No Comments.